from classes import classes import numpy as np from sentence_transformers import SentenceTransformer, util import streamlit as st # Simple sentence transformer model_checkpoint = 'sentence-transformers/paraphrase-distilroberta-base-v1' model = SentenceTransformer(model_checkpoint) # Predefined messages and their embeddings classes_text = np.array(classes) classes_embeddings = model.encode(classes_text, convert_to_numpy=True) assert classes_embeddings.shape[0] == len(classes) # Function to compare the embedding of the human chat/text message with the embeddings of the # predefined messages def convert(sentence_embedding: np.array, class_embeddings: np.array, top_n=5) -> np.array: similarities = np.array(util.cos_sim(sentence_embedding, class_embeddings)).reshape(-1,) top_n_indices = np.argsort(similarities)[::-1][0:top_n] return top_n_indices # Simple title and description for the app st.title('JHG Chat Message Converter') st.write('Converts human chat/text messages into predefined chat messages via a sentence transformer') # Number of predictions to display n_preds = st.slider("Number of predictions to display:", min_value=1, max_value=10, step=1) # Text box to enter a chat/text message text = st.text_area('Enter chat message') if text and n_preds: # Use the sentence transformer and "convert" function to display predicted, predefined messages text_embedding = model.encode(text, convert_to_numpy=True) indices = convert(text_embedding, classes_embeddings, top_n=n_preds) predicted_classes = classes_text[indices] for converted_message in predicted_classes: st.write(converted_message)