File size: 33,739 Bytes
cae4d0f
 
 
 
 
 
 
 
 
5b04d4e
cae4d0f
 
5888550
c8225f5
 
 
 
97a28b9
c8225f5
 
6b09246
 
 
 
 
 
 
 
 
 
 
 
97a28b9
 
6b09246
 
 
 
 
 
 
 
 
 
 
 
 
 
a43032b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9cdb678
a43032b
 
 
 
 
 
 
9cdb678
a43032b
 
 
 
 
 
 
8b5d0f4
a43032b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07ad260
d0105c8
cb9f237
d0105c8
97a28b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0105c8
 
97a28b9
 
d0105c8
 
 
 
97a28b9
 
d0105c8
97a28b9
 
 
9835969
97a28b9
9835969
97a28b9
 
9835969
97a28b9
 
 
 
 
 
 
9835969
97a28b9
07ad260
 
 
 
 
 
 
 
 
 
97a28b9
d0105c8
9835969
af23b14
97a28b9
 
 
9835969
0d0fe99
97a28b9
a43032b
 
 
b0db80c
07ad260
9ef3794
a43032b
 
19c0895
a43032b
b0db80c
a43032b
 
 
97a28b9
 
 
 
07ad260
97a28b9
 
 
 
 
07ad260
 
 
 
0a7c918
 
 
07ad260
 
97a28b9
d0105c8
 
 
 
9835969
 
 
 
 
 
d0105c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9cfb29f
d0105c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e1a6ae
d0105c8
 
 
 
 
 
9835969
 
132cb6a
d0105c8
 
9835969
b0db80c
a43032b
 
b0db80c
a43032b
 
 
 
b0db80c
a43032b
 
b0db80c
 
a43032b
 
c8225f5
 
cae4d0f
9835969
 
b0db80c
9835969
 
 
 
 
 
 
b0db80c
9835969
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0db80c
 
 
 
9835969
 
 
 
 
b0db80c
 
9835969
b0db80c
9835969
 
b0db80c
 
9835969
 
 
 
56e849d
9835969
6b09246
 
cae4d0f
7a90675
dbd3b18
 
 
 
 
7a90675
 
 
 
 
dbd3b18
 
 
 
cae4d0f
 
 
 
 
 
ea6af72
 
5888550
 
 
 
ea6af72
 
 
6b09246
 
56e849d
13fe545
 
cb9f237
13fe545
56e849d
 
 
 
 
 
 
 
 
 
 
 
 
 
cb9f237
 
56e849d
cb9f237
 
56e849d
cb9f237
 
56e849d
 
 
 
cb9f237
 
56e849d
cb9f237
 
56e849d
cb9f237
 
56e849d
 
 
 
d0105c8
9835969
d0105c8
9835969
 
d0105c8
56e849d
 
13fe545
ea6af72
 
 
13fe545
ea6af72
7a90675
 
 
 
 
ea6af72
 
 
6b09246
5888550
 
6b09246
ea6af72
5888550
 
 
 
 
ea6af72
 
 
5888550
 
 
 
 
 
 
 
 
 
13fe545
 
cb9f237
13fe545
6b09246
 
 
 
 
 
 
 
 
 
 
 
 
 
cb9f237
 
6b09246
cb9f237
 
6b09246
cb9f237
 
6b09246
 
 
 
cb9f237
 
6b09246
cb9f237
 
6b09246
cb9f237
 
6b09246
 
 
 
 
 
13fe545
c8225f5
 
 
5888550
 
 
 
 
 
13fe545
 
5888550
 
 
 
 
 
 
 
6b09246
 
 
5888550
 
 
 
 
ea6af72
cae4d0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbd3b18
 
cae4d0f
 
 
 
ea6af72
cae4d0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13fe545
cae4d0f
6b09246
 
cae4d0f
 
 
490893b
 
 
b2119dc
 
 
 
 
 
 
 
 
 
 
 
 
 
490893b
b2119dc
490893b
b2119dc
490893b
 
 
 
 
 
 
 
cae4d0f
 
9835969
 
 
07ad260
fc7c800
9835969
cae4d0f
ea6af72
cae4d0f
7a90675
dbd3b18
cae4d0f
 
cb9f237
 
cae4d0f
 
6b09246
 
 
 
 
 
 
 
 
 
 
713729d
6b09246
 
 
 
9835969
af6e747
c8225f5
 
 
bf11a73
d0105c8
a43032b
9835969
c8225f5
cae4d0f
 
 
 
7a90675
 
 
 
6b09246
cae4d0f
7a90675
 
cae4d0f
 
 
 
 
5888550
67324c2
cb9f237
 
cae4d0f
 
7a90675
 
 
 
 
 
 
 
 
 
5888550
7a90675
67324c2
7a90675
 
 
cb9f237
7a90675
 
cb9f237
7a90675
 
 
cae4d0f
 
 
 
490893b
 
 
6927b6c
 
 
 
 
 
 
490893b
 
 
cae4d0f
 
 
 
 
 
5888550
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from src.about import CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT, EVALUATION_QUEUE_TEXT, INTRODUCTION_TEXT, LLM_BENCHMARKS_TEXT, TITLE
from src.tasks import TASK_DESCRIPTIONS, MEASURE_DESCRIPTION
from src.display.css_html_js import custom_css
from src.display.utils import BENCHMARK_COLS, COLS, EVAL_COLS, EVAL_TYPES, AutoEvalColumn, ModelType, fields, WeightType, Precision
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval
import random
import matplotlib.pyplot as plt
import re
import plotly.express as px
import plotly.graph_objects as go
import numpy as np


def mean_of_max_per_field(df):
    """

    Calcola il massimo per ciascun campo e poi la media dei massimi.



    Args:

        df (pd.DataFrame): DataFrame con colonne TE, SA, HS, AT, WIC, FAQ, LS, SU, NER, REL



    Returns:

        float: media dei valori massimi dei campi

    """
    fields = ["TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]

    #print(df.columns)

    # Controlla che tutte le colonne esistano nel DataFrame
    missing = [f for f in fields if f not in df.columns]
    if missing:
        raise ValueError(f"Le seguenti colonne mancano nel DataFrame: {missing}")

    # Calcola il massimo per ciascun campo
    max_values = df[fields].max()

    # Calcola la media dei massimi
    mean_max = max_values.mean()

    return mean_max


def barplot_mean_few_minus_zero_shot(dataframe, tasks=None):
    if tasks is None:
        tasks = ["TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]

    task_means = {}

    for task in tasks:
        if task not in dataframe.columns:
            continue

        # Separa few-shot e zero-shot
        few_shot = dataframe[dataframe['IS_FS'] == True][["Model", task]]
        zero_shot = dataframe[dataframe['IS_FS'] == False][["Model", task]]

        # Allinea i modelli
        merged = pd.merge(few_shot, zero_shot, on="Model", suffixes=("_few", "_zero"))

        # Rimuovi righe con valori mancanti
        merged = merged.dropna(subset=[f"{task}_few", f"{task}_zero"])

        if merged.empty:
            continue

        # Calcola differenza few - zero
        diff = merged[f"{task}_few"] - merged[f"{task}_zero"]

        # Calcola la media
        task_means[task] = diff.mean()

    # Crea barplot
    fig = go.Figure([go.Bar(
        x=list(task_means.keys()),
        y=list(task_means.values()),
        marker_color="#ff7f0e",
        text=[f"{v:.2f}" for v in task_means.values()],
        textposition="outside",
        hovertemplate="<b>%{x}</b><br>Mean Delta Accuracy: %{y:.2f}%<extra></extra>"
    )])

    # Linea di riferimento a 0
    '''

    fig.add_shape(

        type="line",

        x0=-0.5, x1=len(task_means) - 0.5,

        y0=0, y1=0,

        line=dict(color="black", width=2, dash="dash"),

        xref="x", yref="y"

    )

    '''

    fig.update_layout(
        title="Mean Accuracy Difference (Few-shot βˆ’ Zero-shot) per Task",
        xaxis_title="",
        yaxis_title="Mean Delta Combined Performance",
        template="plotly_white",
        font=dict(family="Arial", size=13),
        #margin=dict(b=100)
    )

    fig.add_annotation(
        text="5-shot learning generally outperforms zero-shot, especially in tasks like NER and REL.<br>"
             "Only in Summarization (SU) does it provide no accuracy gain.",
        xref="paper", yref="paper",
        x=0, y=-0.2,
        showarrow=False,
        font=dict(size=11, color="gray"),
        align="left"
    )

    return fig


def boxplot_per_task(dataframe=None, baselines=None, references=None):

    #print(dataframe.columns)

    tasks = ["TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]

    if dataframe is None:
        np.random.seed(42)
        dataframe = pd.DataFrame({
            task: np.random.uniform(0.4, 0.9, 20) * 100
            for task in tasks
        })

    if baselines is None:
        baselines = {task: np.random.randint(50, 70) for task in tasks}

    colors = ["#1f77b4", "#ff7f0e", "#2ca02c", "#d62728", "#9467bd",
              "#8c564b", "#e377c2", "#7f7f7f", "#bcbd22", "#17becf"]

    fig = go.Figure()

    for i, task in enumerate(tasks):
        if task in dataframe.columns:
            y_data = dataframe[task].dropna().tolist()

            # boxplot
            fig.add_trace(go.Box(
                y=y_data,
                name=task,
                marker=dict(color=colors[i]),
                line=dict(color="black", width=2),
                fillcolor=colors[i],
                opacity=0.7,
                hovertemplate="<b>"+task+"</b><br>Accuracy: %{y:.2f}%<extra></extra>",
                width=0.6,
                whiskerwidth=0.2,
                quartilemethod="linear"
            ))

            # baseline
            if task in baselines and baselines[task] is not None:
                fig.add_shape(
                    type="line",
                    x0=i - 0.3, x1=i + 0.3,
                    y0=baselines[task], y1=baselines[task],
                    line=dict(color="black", width=2, dash="dot"),  # piΓΉ visibile
                    xref="x", yref="y"
                )
                '''

                fig.add_annotation(

                    x=i, y=baselines[task],

                    text=f"{baselines[task]}%",

                    showarrow=False,

                    yshift=10,

                    font=dict(size=10, color="black")

                )

                '''

            # reference GPT-4o
            if task in references and references[task] is not None:
                fig.add_shape(
                    type="line",
                    x0=i - 0.3, x1=i + 0.3,
                    y0=references[task], y1=references[task],
                    line=dict(color="red", width=2, dash="dashdot"),
                    xref="x", yref="y"
                )

    fig.update_layout(
        title="Distribution of Model Accuracy by Task",
        xaxis_title="Task",
        yaxis_title="Combined Performance",
        template="plotly_white",
        boxmode="group",
        dragmode=False,
        font=dict(family="Arial", size=10),
        margin=dict(b=80),
    )

    fig.add_annotation(
        text=(
            "In tasks like TE and SA, models approach the accuracy of supervised <br>"
            "models at EVALITA (dashed black line); in NER and REL they remain lower. <br>"
            "Dashed red lines show GPT-4o reference results for generative tasks."
        ),
        xref="paper", yref="paper",
        x=0.5, y=-0.30,
        showarrow=False,
        font=dict(size=11, color="gray"),
        align="left"
    )

    fig.update_yaxes(range=[0, 100], fixedrange=True)

    return fig

# EVALITA results
BASELINES = {
    "TE":71.00, "SA": 66.38, "HS": 80.88, "AT": 82.40, "WIC": 85.00,
    "LS": 38.82, "SU": 38.91, "NER":88.00, "REL": 62.99
}

# GPT-4o
REFERENCES = {
    "NER": 79.11,
    "REL": 63.32,
    "LS": 59.25,
    "SU": 33.04

}


def boxplot_prompts_per_task(dataframe, tasks=None):
    if tasks is None:
        tasks = ["TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]

    # Lista delle colonne da aggiornare
    cols_to_update = ["REL Best Prompt Id", "NER Best Prompt Id", "SU Best Prompt Id", "LS Best Prompt Id"]
    # Applichiamo la trasformazione
    for col in cols_to_update:
        dataframe[col] = dataframe[col].replace({1: 7, 2: 8})

    fig = go.Figure()

    # Liste per creare una sola voce in legenda per Average e Best
    avg_x, avg_y = [], []
    best_x, best_y, best_text = [], [], []

    for task in tasks:
        avg_col = f"{task} Prompt Average"
        best_col = f"{task} Best Prompt"
        best_id_col = f"{task} Best Prompt Id"

        if all(col in dataframe.columns for col in [avg_col, best_col, best_id_col]):
            avg_value = dataframe[avg_col].mean()
            avg_x.append(task)
            avg_y.append(avg_value)

            best_value = dataframe[best_col].mean()
            best_x.append(task)
            best_y.append(best_value)
            best_id = dataframe[best_id_col].mode()[0]  # Most frequent best prompt id
            best_text.append(f"P:{best_id}")

    # Barre Average Accuracy (azzurro)
    fig.add_trace(go.Bar(
        x=avg_x,
        y=avg_y,
        name="Avg. Accuracy",
        marker_color="#1f77b4",
        #hovertemplate="%{y:.2f}%<extra></extra>"
        #hovertemplate="<b>" + task + "</b><br>Accuracy: %{y:.2f}%<extra></extra>",
    ))

    # Barre Best Prompt (rosso)
    fig.add_trace(go.Bar(
        x=best_x,
        y=best_y,
        name="Best Prompt",
        marker_color="#d62728",
        #hovertemplate="%{y:.2f}%<extra></extra>"
        #hovertemplate = "<b>" + task + "</b><br>Accuracy: %{y:.2f}%<extra></extra>",
    ))

    # Testo sopra barre Best Prompt con ID
    for x, y, text in zip(best_x, best_y, best_text):
        fig.add_annotation(
            x=x,
            y=y + 3,  # leggermente sopra la barra
            text=text,
            showarrow=False,
            font=dict(size=12, color="black")
        )

    fig.update_layout(
        title= "Prompt Accuracy: Avg vs Best",
        xaxis_title="Task",
        yaxis_title="Combined Performance",
        barmode='group',
        template="plotly_white",
        font=dict(family="Arial", size=10),
        yaxis=dict(range=[0, 100], fixedrange=True)
    )

    # caption come annotazione separata
    fig.add_annotation(
        text="There is no single prompt that performs best across all tasks.<br>"
             "Different prompts achieve the highest accuracy on different tasks.",
        xref="paper", yref="paper",
        x=0.5, y=-0.3,
        showarrow=False,
        font=dict(size=11, color="gray"),
        align="center",
        xanchor="center"
    )

    return fig


def line_chart(dataframe):

    # Normalizza le dimensioni per avere marker non troppo piccoli nΓ© enormi
    def scale_sizes(values, min_size=8, max_size=30):
        vmin, vmax = min(values), max(values)
        return [
            min_size + (val - vmin) / (vmax - vmin) * (max_size - min_size) if vmax > vmin else (min_size + max_size) / 2
            for val in values
        ]

    # dati in base a IS_FS
    df_true = dataframe[dataframe['IS_FS'] == True]
    df_false = dataframe[dataframe['IS_FS'] == False]

    # Estrai valori x, y e labels
    x_true = df_true['#Params (B)'].tolist()
    y_true = df_true['Avg. Comb. Perf. ⬆️'].tolist()
    labels_true = [re.search(r'>([^<]+)<', m).group(1) for m in df_true['Model'].tolist()]

    x_false = df_false['#Params (B)'].tolist()
    y_false = df_false['Avg. Comb. Perf. ⬆️'].tolist()
    labels_false = [re.search(r'>([^<]+)<', m).group(1) for m in df_false['Model'].tolist()]

    fig = go.Figure()

    # Punti IS_FS=True
    fig.add_trace(go.Scatter(
        x=x_true,
        y=y_true,
        mode='markers',
        name='5-Shot',
        marker=dict(
            color='blue',
            size=scale_sizes(x_true)
        ),
        hovertemplate='<b>%{customdata}</b><br>#Params: %{x}<br>Performance: %{y}<extra></extra>',
        customdata=labels_true
    ))

    # Punti IS_FS=False
    fig.add_trace(go.Scatter(
        x=x_false,
        y=y_false,
        mode='markers',
        name='0-Shot',
        marker=dict(
            color='red',
            size=scale_sizes(x_false)
        ),
        hovertemplate='<b>%{customdata}</b><br>#Params: %{x}<br>Performance: %{y}<extra></extra>',
        customdata=labels_false
    ))

    # Trova il massimo tra tutti i modelli
    all_y = y_true + y_false
    all_x = x_true + x_false
    all_labels = labels_true + labels_false
    max_idx = all_y.index(max(all_y))
    max_x = all_x[max_idx]
    max_y = all_y[max_idx]
    max_label = all_labels[max_idx]

    # Aggiungi annotazione visibile per il modello migliore
    fig.add_annotation(
        x=max_x,
        y=max_y,
        #text=f"Top: {max_label} ({max_y:.1f}%)",
        text=f"{max_label}",
        showarrow=True,
        arrowhead=2,
        arrowsize=1,
        arrowwidth=2,
        arrowcolor="black",
        font=dict(size=11, color="black"),
        xshift=10,
        yshift=10,
        ax = -30, ay = -20,  # sposta la label a sinistra e sopra il punto
        xanchor = "right"  # allinea la label a destra rispetto al punto
    )

    fig.update_layout(
        title="Avg. Combined Performance vs #Params",
        xaxis_title="#Params (B)",
        yaxis_title="Avg. Combined Performance",
        template="plotly_white",
        hovermode="closest",
        font=dict(family="Arial", size=10),
        dragmode=False,
        xaxis=dict(
            tickvals=[0, 25, 50, 75, 100, 125],
            ticktext=["0", "25", "50", "75", "100"]
        ),
        yaxis=dict(
            tickvals=[0, 20, 40, 60, 80, 100],  # πŸ‘ˆ tick fissi
            range=[0, 100]  # πŸ‘ˆ range bloccato
        )
    )

    # Caption
    fig.add_annotation(
        text="Accuracy generally rises with #Params, but smaller models <br>"
             "with 5-shot can outperform larger zero-shot models.",
        xref="paper", yref="paper",
        x=0.5, y=-0.3,  # πŸ‘ˆ centrata
        showarrow=False,
        font=dict(size=11, color="gray"),
        align="center",
        xanchor="center"  # πŸ‘ˆ ancora centrata rispetto al testo
    )

    fig.update_xaxes(fixedrange=True, rangeslider_visible=False)
    fig.update_yaxes(fixedrange=True)

    return fig


# Define task metadata (icons, names, descriptions)
TASK_METADATA_MULTIPLECHOICE = {
    "TE": {"icon": "πŸ“Š", "name": "Textual Entailment", "tooltip": ""},
    "SA": {"icon": "πŸ˜ƒ", "name": "Sentiment Analysis", "tooltip": ""},
    "HS": {"icon": "⚠️", "name": "Hate Speech", "tooltip": ""},
    "AT": {"icon": "πŸ₯", "name": "Admission Test", "tooltip": ""},
    "WIC": {"icon": "πŸ”€", "name": "Word in Context", "tooltip": ""},
    "FAQ": {"icon": "❓", "name": "Frequently Asked Questions", "tooltip": ""}
}

# Define task metadata (icons, names, descriptions)
TASK_METADATA_GENERATIVE = {
    "LS": {"icon": "πŸ”„", "name": "Lexical Substitution", "tooltip": ""},
    "SU": {"icon": "πŸ“", "name": "Summarization", "tooltip": ""},
    "NER": {"icon": "🏷️", "name": "Named Entity Recognition", "tooltip": ""},
    "REL": {"icon": "πŸ”—", "name": "Relation Extraction", "tooltip": ""},
}

def restart_space():
    """Restart the Hugging Face space."""
    API.restart_space(repo_id=REPO_ID)


def init_leaderboard(dataframe, default_selection=None, hidden_columns=None):
    """

    Initialize and return the leaderboard when it is first loaded or when 'benchmark' is selected.

    The table is sorted based on the "Avg. Combined Performance" field.

    """
    if dataframe is None or dataframe.empty:
        raise ValueError("Leaderboard DataFrame is empty or None.")

    #print("????????????????????????????????", mean_of_max_per_field(dataframe))

    sorted_dataframe = dataframe.sort_values(by="Avg. Comb. Perf. ⬆️", ascending=False)

    sorted_dataframe = sorted_dataframe.reset_index(drop=True)
    sorted_dataframe["Rank"] = sorted_dataframe.index + 1

    # Flag per sapere se la medaglia Γ¨ giΓ  stata assegnata per categoria e tipo
    large_medal_fs_assigned = False
    medium_medal_fs_assigned = False
    small_medal_fs_assigned = False

    large_medal_0shot_assigned = False
    medium_medal_0shot_assigned = False
    small_medal_0shot_assigned = False

    # Lista temporanea per salvare i nuovi valori della colonna Model
    new_model_column = []

    for _, row in sorted_dataframe.iterrows():
        if row['IS_FS']:  # 5-Few-Shot
            if row["Size"] == "πŸ”΅πŸ”΅πŸ”΅" and not large_medal_fs_assigned:
                new_model_column.append(f"{row['Model']} πŸ”΅πŸ”΅πŸ”΅πŸ†")
                large_medal_fs_assigned = True
            elif row["Size"] == "πŸ”΅πŸ”΅" and not medium_medal_fs_assigned:
                new_model_column.append(f"{row['Model']} πŸ”΅πŸ”΅πŸ†")
                medium_medal_fs_assigned = True
            elif row["Size"] == "πŸ”΅" and not small_medal_fs_assigned:
                new_model_column.append(f"{row['Model']} πŸ”΅πŸ†")
                small_medal_fs_assigned = True
            else:
                new_model_column.append(row["Model"])
        else:  # 0-Shot
            if row["Size"] == "πŸ”΅πŸ”΅πŸ”΅" and not large_medal_0shot_assigned:
                new_model_column.append(f"{row['Model']} πŸ”΅πŸ”΅πŸ”΅πŸŽ–οΈ")
                large_medal_0shot_assigned = True
            elif row["Size"] == "πŸ”΅πŸ”΅" and not medium_medal_0shot_assigned:
                new_model_column.append(f"{row['Model']} πŸ”΅πŸ”΅πŸŽ–οΈ")
                medium_medal_0shot_assigned = True
            elif row["Size"] == "πŸ”΅" and not small_medal_0shot_assigned:
                new_model_column.append(f"{row['Model']} πŸ”΅πŸŽ–οΈ")
                small_medal_0shot_assigned = True
            else:
                new_model_column.append(row["Model"])

    # Lista delle colonne da aggiornare
    #cols_to_update = ["REL Best Prompt Id", "NER Best Prompt Id", "SU Best Prompt Id", "LS Best Prompt Id"]
    # Applichiamo la trasformazione
    #for col in cols_to_update:
    #    dataframe[col] = dataframe[col].replace({1: 7, 2: 8})

    # Aggiorna la colonna Model
    sorted_dataframe["Model"] = new_model_column

    field_list = fields(AutoEvalColumn)

    return Leaderboard(
        value=sorted_dataframe,
        datatype=[c.type for c in field_list],
        #select_columns=SelectColumns(
        #    default_selection=default_selection or [c.name for c in field_list if c.displayed_by_default],
        #    cant_deselect=[c.name for c in field_list if c.never_hidden],
        #    label="Select Columns to Display:",
        #),
        search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
        hide_columns=hidden_columns or [c.name for c in field_list if c.hidden],
        filter_columns=[
            ColumnFilter(AutoEvalColumn.fewshot_symbol.name, type="checkboxgroup", label="N-Shot Learning (FS)"),
            #ColumnFilter(AutoEvalColumn.fewshot_symbol.name, type="checkboxgroup", label="N-Few-Shot Learning (FS)",
            #             default=[["0️⃣", "0️⃣"]]),
            ColumnFilter(AutoEvalColumn.params.name, type="slider", min=0, max = 100, default = [0,100], label="Select the number of parameters (B)"),
        ],
        #filter_columns=[
        #    ColumnFilter("IS_FS", type="checkbox", default=False, label="5-Few-Shot")
        #    #ColumnFilter("FS", type="dropdown", label="5-Few-Shot")
        #],
        bool_checkboxgroup_label="Evaluation Mode",
        interactive=False,
    )

def update_task_leaderboard(dataframe, default_selection=None, hidden_columns=None):
    """

    Update and return the leaderboard when a specific task is selected.

    The table is sorted based on the "Combined Performance" field.

    """
    if dataframe is None or dataframe.empty:
        raise ValueError("Leaderboard DataFrame is empty or None.")

    sorted_dataframe = dataframe.sort_values(by="Combined Performance", ascending=False)

    # aggiungo la colonna rank in base alla posizione
    sorted_dataframe = sorted_dataframe.reset_index(drop=True)
    sorted_dataframe["Rank"] = sorted_dataframe.index + 1

    # Flag per sapere se la medaglia Γ¨ giΓ  stata assegnata per categoria e tipo
    large_medal_fs_assigned = False
    medium_medal_fs_assigned = False
    small_medal_fs_assigned = False

    large_medal_0shot_assigned = False
    medium_medal_0shot_assigned = False
    small_medal_0shot_assigned = False

    # Lista temporanea per salvare i nuovi valori della colonna Model
    new_model_column = []

    for _, row in sorted_dataframe.iterrows():
        if row['IS_FS']:  # 5-Few-Shot
            if row["Size"] == "πŸ”΅πŸ”΅πŸ”΅" and not large_medal_fs_assigned:
                new_model_column.append(f"{row['Model']} πŸ”΅πŸ”΅πŸ”΅πŸ†")
                large_medal_fs_assigned = True
            elif row["Size"] == "πŸ”΅πŸ”΅" and not medium_medal_fs_assigned:
                new_model_column.append(f"{row['Model']} πŸ”΅πŸ”΅πŸ†")
                medium_medal_fs_assigned = True
            elif row["Size"] == "πŸ”΅" and not small_medal_fs_assigned:
                new_model_column.append(f"{row['Model']} πŸ”΅πŸ†")
                small_medal_fs_assigned = True
            else:
                new_model_column.append(row["Model"])
        else:  # 0-Shot
            if row["Size"] == "πŸ”΅πŸ”΅πŸ”΅" and not large_medal_0shot_assigned:
                new_model_column.append(f"{row['Model']} πŸ”΅πŸ”΅πŸ”΅πŸŽ–οΈ")
                large_medal_0shot_assigned = True
            elif row["Size"] == "πŸ”΅πŸ”΅" and not medium_medal_0shot_assigned:
                new_model_column.append(f"{row['Model']} πŸ”΅πŸ”΅πŸŽ–οΈ")
                medium_medal_0shot_assigned = True
            elif row["Size"] == "πŸ”΅" and not small_medal_0shot_assigned:
                new_model_column.append(f"{row['Model']} πŸ”΅πŸŽ–οΈ")
                small_medal_0shot_assigned = True
            else:
                new_model_column.append(row["Model"])

    # Aggiorna la colonna Model
    sorted_dataframe["Model"] = new_model_column

    pd.set_option('display.max_colwidth', None)
    #print("========================", dataframe['Model'])

    #print(sorted_dataframe['Combined Performance'])

    field_list = fields(AutoEvalColumn)

    return Leaderboard(
        value=sorted_dataframe,
        #datatype=[c.type for c in field_list],
        datatype=[c.type for c in field_list] + [int],
        #select_columns=SelectColumns(
        #    default_selection=default_selection or [c.name for c in field_list if c.displayed_by_default],
        #    cant_deselect=[c.name for c in field_list if c.never_hidden],
        #    label="Select Columns to Display:",
        #),
        search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
        hide_columns=hidden_columns or [c.name for c in field_list if c.hidden],
        filter_columns=[
            ColumnFilter(AutoEvalColumn.fewshot_symbol.name, type="checkboxgroup", label="N-Shot Learning (FS)"),
            ColumnFilter(AutoEvalColumn.params.name, type="slider", min=0, max=100, default=[0, 100],
                         label="Select the number of parameters (B)"),
        ],
        bool_checkboxgroup_label="Evaluation Mode",
        interactive=False
    )

'''

# Helper function for leaderboard initialization

def init_leaderboard(dataframe, default_selection=None, hidden_columns=None):

    """Initialize and return a leaderboard."""

    if dataframe is None or dataframe.empty:

        raise ValueError("Leaderboard DataFrame is empty or None.")



    return Leaderboard(

        value=dataframe,

        datatype=[c.type for c in fields(AutoEvalColumn)],

        select_columns=SelectColumns(

            default_selection=default_selection or [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],

            cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],

            label="Select Columns to Display:",

        ),

        search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],

        hide_columns=hidden_columns or [c.name for c in fields(AutoEvalColumn) if c.hidden],

        filter_columns=[

            ColumnFilter(AutoEvalColumn.fewshot_type.name, type="checkboxgroup", label="N-Few-Shot Learning (FS)"),

            ColumnFilter(AutoEvalColumn.params.name, type="slider", min=0, max=150, label="Select the number of parameters (B)"),

        ],

        bool_checkboxgroup_label="Hide models",

        interactive=False,

    )

'''

def download_snapshot(repo, local_dir):
    """Try to download a snapshot from Hugging Face Hub."""
    try:
        print(f"Downloading from {repo} to {local_dir}...")
        snapshot_download(repo_id=repo, local_dir=local_dir, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN)
    except Exception as e:
        print(f"Error downloading {repo}: {e}")
        restart_space()


# Initialize the app by downloading snapshots
download_snapshot(QUEUE_REPO, EVAL_REQUESTS_PATH)
download_snapshot(RESULTS_REPO, EVAL_RESULTS_PATH)

# Load leaderboard data
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
#print(LEADERBOARD_DF.columns.tolist())

theoretical_max_combined_perf = mean_of_max_per_field(LEADERBOARD_DF)

# Prepare the main interface
demo = gr.Blocks(css=custom_css)
with demo:
    #gr.HTML(TITLE)
    gr.HTML(
        """

        <div style="display: flex; align-items: center; position: relative; width: 100%; height: 60px; padding: 10px 0;">

            <h1 style="

                margin: 0 auto; 

                font-weight: 900; 

                font-size: 2.5em; 

                letter-spacing: 2px; 

                text-transform: uppercase; 

                background: linear-gradient(90deg, #1f77b4, #00c6ff); 

                -webkit-background-clip: text; 

                -webkit-text-fill-color: transparent; 

                text-shadow: 2px 2px 8px rgba(0,0,0,0.2);

            ">

                EVALITA-LLM Leaderboard

            </h1>

            <a href="https://huggingface.co/spaces/mii-llm/open_ita_llm_leaderboard" target="_blank" 

               style="position: absolute; right: 0; display: inline-flex; align-items: center; gap: 6px; text-decoration: none; color: #1f77b4; font-weight: 600;">

                <!-- Icona stilizzata -->

                <svg xmlns="http://www.w3.org/2000/svg" width="22" height="22" fill="#1f77b4" viewBox="0 0 24 24">

                    <path d="M3.9 12a5 5 0 0 1 7.07-7.07l1.41 1.41-1.41 1.41-1.42-1.42a3 3 0 1 0 4.24 4.24l3.54-3.54a5 5 0 0 1-7.07 7.07l-1.41-1.41 1.41-1.41 1.42 1.42z"/>

                    <path d="M20.1 12a5 5 0 0 1-7.07 7.07l-1.41-1.41 1.41-1.41 1.42 1.42a3 3 0 1 0-4.24-4.24l-3.54 3.54a5 5 0 0 1 7.07-7.07l1.41 1.41-1.41 1.41-1.42-1.42z"/>

                </svg>

                Open Italian LLM Leaderboard

            </a>

        </div>

        """
    )
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

    # ⬇️ QUI aggiungiamo i grafici subito sotto la barra del titolo e sopra le tabs
    with gr.Row():
        gr.Plot(value=line_chart(LEADERBOARD_DF), elem_id="line-chart")
        gr.Plot(value=boxplot_per_task(LEADERBOARD_DF, BASELINES, REFERENCES), elem_id="boxplot-task")
        #gr.Plot(value=boxplot_prompts_per_task(LEADERBOARD_DF), elem_id="boxplot-prompt-task")

    with gr.Tabs(elem_classes="tab-buttons") as tabs:

        # Main leaderboard tab
        with gr.TabItem("πŸ… Benchmark"):

            leaderboard = init_leaderboard(
                LEADERBOARD_DF,
                default_selection=['Rank', 'Size', 'FS', 'Model', "Avg. Comb. Perf. ⬆️", "TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"],
                hidden_columns=[col for col in LEADERBOARD_DF.columns if col not in ['Rank', 'Size', 'FS', 'Model', "Avg. Comb. Perf. ⬆️", "TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]]
            )

            gr.HTML(
                f"""

                        <div style="

                            border: 2px solid #1f77b4;

                            border-radius: 10px;

                            padding: 10px;

                            background-color: #f0f8ff;

                            font-weight: bold;

                            font-size: 14px;

                            display: inline-block;

                        ">

                            Theoretical performance of a model that scores the highest on every individual task: <span style="color:#d62728; font-size:18px;">{theoretical_max_combined_perf:.2f}</span>

                        </div>

                        """
            )

        '''

        with gr.TabItem("πŸ“ˆ Charts"):

            #gr.Plot(value=line_chart(LEADERBOARD_DF), label="Andamento di esempio")

            #gr.Plot(value=line_chart_interactive_test(), label="Andamento interattivo")

            gr.Plot(value=line_chart(LEADERBOARD_DF))

            gr.Plot(value=boxplot_per_task(LEADERBOARD_DF, BASELINES))

            gr.Plot(value=boxplot_prompts_per_task(LEADERBOARD_DF))

            gr.Plot(value=barplot_mean_few_minus_zero_shot(LEADERBOARD_DF))

        '''

        # About tab
        with gr.TabItem("πŸ“ About"):
            gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")

        # About tab
        with gr.TabItem("β•‘", interactive=False):
            gr.Markdown("", elem_classes="markdown-text")


        # Task-specific leaderboards
        for task, metadata in TASK_METADATA_MULTIPLECHOICE.items():

            with gr.TabItem(f"{metadata['icon']}{task}"):

                task_description = TASK_DESCRIPTIONS.get(task, "Description not available.")
                gr.Markdown(task_description, elem_classes="markdown-text")

                leaderboard = update_task_leaderboard(
                    LEADERBOARD_DF.rename(columns={f"{task} Prompt Average": "Prompt Average", f"{task} Prompt Std": "Prompt Std", f"{task} Best Prompt": "Best Prompt", f"{task} Best Prompt Id": "Best Prompt Id", task: "Combined Performance"}),
                    default_selection=['Rank', 'Size', 'FS', 'Model', 'Combined Performance', 'Prompt Average', 'Prompt Std', 'Best Prompt', 'Best Prompt Id'],
                    hidden_columns=[col for col in LEADERBOARD_DF.columns if col not in ['Rank', 'Size', 'FS', 'Model', 'Combined Performance', 'Prompt Average', 'Prompt Std', 'Best Prompt', 'Best Prompt Id']]
                )

        # About tab
        with gr.TabItem("β”‚", interactive=False):
            gr.Markdown("", elem_classes="markdown-text")

        # Task-specific leaderboards
        for task, metadata in TASK_METADATA_GENERATIVE.items():
            with gr.TabItem(f"{metadata['icon']}{task}"):
                task_description = TASK_DESCRIPTIONS.get(task, "Description not available.")
                gr.Markdown(task_description, elem_classes="markdown-text")

                leaderboard = update_task_leaderboard(
                    LEADERBOARD_DF.rename(columns={f"{task} Prompt Average": "Prompt Average",
                                                   f"{task} Prompt Std": "Prompt Std",
                                                   f"{task} Best Prompt": "Best Prompt",
                                                   f"{task} Best Prompt Id": "Best Prompt Id",
                                                   task: "Combined Performance"}),
                    default_selection=['Rank', 'Size', 'FS', 'Model', 'Combined Performance', 'Prompt Average', 'Prompt Std', 'Best Prompt',
                                       'Best Prompt Id'],
                    hidden_columns=[col for col in LEADERBOARD_DF.columns if
                                    col not in ['Rank', 'Size', 'FS', 'Model', 'Combined Performance', 'Prompt Average', 'Prompt Std',
                                                'Best Prompt', 'Best Prompt Id']]
                )

    # Citation section
    with gr.Accordion("πŸ“™ Citation", open=False):
        gr.Textbox(value=CITATION_BUTTON_TEXT, label=CITATION_BUTTON_LABEL, lines=20, elem_id="citation-button", show_copy_button=True)

    with gr.Accordion("πŸ“™ Credits", open=False):
        gr.Markdown(
            """

    **This project has benefited from the following support:**



    - 🧠 **Codebase**: Based on and extended from the Open Italian LLM Leaderboard, developed by **Alessandro Ercolani** and **Samuele Colombo**. We warmly thank them for their invaluable support and guidance in implementing this leaderboard.



    - πŸ’Ά **Funding**: Partially supported by the PNRR project **FAIR - Future AI Research (PE00000013)**, under the NRRP MUR program funded by **NextGenerationEU**.



    - πŸ–₯️ **Computation**: We gratefully acknowledge **CINECA** for granting access to the **LEONARDO** supercomputer.  

            """
        )

# Background job to restart space
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()

# Launch the app with concurrent queueing
demo.queue(default_concurrency_limit=40).launch(debug=True,  # Enable Gradio debug mode
        show_error=True)