File size: 25,265 Bytes
ad05cd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from functools import lru_cache
import logging

from src.about import CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT, EVALUATION_QUEUE_TEXT, INTRODUCTION_TEXT, \
    LLM_BENCHMARKS_TEXT, TITLE
from src.tasks import TASK_DESCRIPTIONS, MEASURE_DESCRIPTION
from src.display.css_html_js import custom_css
from src.display.utils import BENCHMARK_COLS, COLS, EVAL_COLS, EVAL_TYPES, AutoEvalColumn, ModelType, fields, \
    WeightType, Precision
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval
import matplotlib.pyplot as plt
import re
import plotly.express as px
import plotly.graph_objects as go
import numpy as np

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# EVALITA results
BASELINES = {
    "TE": 71.00, "SA": 66.38, "HS": 80.88, "AT": 82.40, "WIC": 85.00,
    "LS": 38.82, "SU": 38.91, "NER": 88.00, "REL": 62.99
}

# GPT-4o results
REFERENCES = {
    "NER": 79.11, "REL": 63.32, "LS": 59.25, "SU": 33.04
}

TASK_METADATA_MULTIPLECHOICE = {
    "TE": {"icon": "πŸ“Š", "name": "Textual Entailment", "tooltip": ""},
    "SA": {"icon": "πŸ˜ƒ", "name": "Sentiment Analysis", "tooltip": ""},
    "HS": {"icon": "⚠️", "name": "Hate Speech", "tooltip": ""},
    "AT": {"icon": "πŸ₯", "name": "Admission Test", "tooltip": ""},
    "WIC": {"icon": "πŸ”€", "name": "Word in Context", "tooltip": ""},
    "FAQ": {"icon": "❓", "name": "Frequently Asked Questions", "tooltip": ""}
}

TASK_METADATA_GENERATIVE = {
    "LS": {"icon": "πŸ”„", "name": "Lexical Substitution", "tooltip": ""},
    "SU": {"icon": "πŸ“", "name": "Summarization", "tooltip": ""},
    "NER": {"icon": "🏷️", "name": "Named Entity Recognition", "tooltip": ""},
    "REL": {"icon": "πŸ”—", "name": "Relation Extraction", "tooltip": ""},
}

def highlight_best_per_task(df):
    """Add 🟑 symbol next to the maximum value in each task column"""

    task_columns = ["TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]

    df = df.copy()
    for col in task_columns:
        if col in df.columns:
            max_val = df[col].max()
            df[col] = df[col].apply(
                lambda x: f"{x:.1f}πŸ”Ί" if x == max_val else f"{x:.1f}"
            )
    return df

def theoretical_performance(df_hash):
    """

    Theoretical performance of a model that scores the highest on every individual task

    """
    # This is a placeholder - you'd need to pass the actual dataframe
    # In practice, you'd compute this once and store it
    #fields = ["TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]
    return 75.0  # Placeholder value


def scale_sizes(values, min_size=8, max_size=30):
    """Normalize sizes for scatter plot markers """
    if not values:
        return []
    vmin, vmax = min(values), max(values)
    if vmax == vmin:
        return [(min_size + max_size) / 2] * len(values)
    return [
        min_size + (val - vmin) / (vmax - vmin) * (max_size - min_size)
        for val in values
    ]


def extract_model_name(model_string):
    """Extract model name from HTML string."""
    match = re.search(r'>([^<]+)<', model_string)
    return match.group(1) if match else model_string


def create_line_chart(dataframe):
    """Create left chart."""

    def scale_sizes(values, min_size=8, max_size=30):
        vmin, vmax = min(values), max(values)
        return [
            min_size + (val - vmin) / (vmax - vmin) * (max_size - min_size) if vmax > vmin
            else (min_size + max_size) / 2
            for val in values
        ]

    fig = go.Figure()

    # Loop su 5-Shot e 0-Shot
    for shot, color in [(True, "blue"), (False, "red")]:
        df = dataframe[dataframe["IS_FS"] == shot]

        x = df["#Params (B)"].tolist()
        y = df["Avg. Comb. Perf. ⬆️"].tolist()
        labels = [
            re.search(r'>([^<]+)<', m).group(1) if isinstance(m, str) and re.search(r'>([^<]+)<', m) else str(m)
            for m in df["Model"].tolist()
        ]

        fig.add_trace(go.Scatter(
            x=x,
            y=y,
            mode="markers",
            name="5-Shot" if shot else "0-Shot",
            marker=dict(color=color, size=scale_sizes(x)),
            hovertemplate="<b>%{customdata}</b><br>#Params: %{x}<br>Performance: %{y}<extra></extra>",
            customdata=labels,
        ))

    # Show the best model
    all_y = dataframe["Avg. Comb. Perf. ⬆️"].tolist()
    if all_y:
        max_idx = all_y.index(max(all_y))
        max_x = dataframe["#Params (B)"].iloc[max_idx]
        max_y = all_y[max_idx]
        max_label = re.search(r'>([^<]+)<', dataframe["Model"].iloc[max_idx]).group(1)

        fig.add_annotation(
            x=max_x,
            y=max_y,
            text=max_label,
            showarrow=True,
            arrowhead=2,
            arrowsize=1,
            arrowwidth=2,
            arrowcolor="black",
            font=dict(size=11, color="black"),
            xshift=10, yshift=10,
            ax=-30, ay=-20,
            xanchor="right"
        )

    # Layout
    fig.update_layout(
        title="Average Combined Performance vs #Params",
        xaxis_title="#Params (B)", yaxis_title="Average Combined Performance",
        template="plotly_white", hovermode="closest",
        font=dict(family="Arial", size=10), dragmode=False,
        xaxis=dict(tickvals=[0, 25, 50, 75, 100, 125], ticktext=["0", "25", "50", "75", "100"]),
        yaxis=dict(tickvals=[0, 20, 40, 60, 80, 100], range=[0, 100])
    )

    # Caption
    fig.add_annotation(
        text="Accuracy generally rises with #Params, but smaller models <br>"
             "with 5-shot can outperform larger zero-shot models.",
        xref="paper", yref="paper", x=0.5, y=-0.3,
        showarrow=False, font=dict(size=11, color="gray"),
        align="center", xanchor="center"
    )

    fig.update_xaxes(fixedrange=True, rangeslider_visible=False)
    fig.update_yaxes(fixedrange=True)

    return fig


def create_boxplot_task(dataframe=None, baselines=None, references=None):
    """Create right chart"""

    tasks = ["TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]

    # Dati di default se non forniti
    if dataframe is None:
        np.random.seed(42)
        dataframe = pd.DataFrame({task: np.random.uniform(0.4, 0.9, 20) * 100 for task in tasks})

    if baselines is None:
        baselines = {task: np.random.randint(50, 70) for task in tasks}

    if references is None:
        references = {}

    colors = ["#1f77b4", "#ff7f0e", "#2ca02c", "#d62728", "#9467bd",
              "#8c564b", "#e377c2", "#7f7f7f", "#bcbd22", "#17becf"]

    fig = go.Figure()

    for i, task in enumerate(tasks):
        if task not in dataframe.columns:
            continue

        y_data = dataframe[task].dropna().tolist()

        # Boxplot
        fig.add_trace(go.Box(
            y=y_data,
            name=task,
            marker=dict(color=colors[i]),
            line=dict(color="black", width=2),
            fillcolor=colors[i],
            opacity=0.7,
            hovertemplate="<b>"+task+"</b><br>Accuracy: %{y:.2f}%<extra></extra>",
            hoverlabel=dict(bgcolor=colors[i], font_color="white"),
            width=0.6,
            whiskerwidth=0.2,
            quartilemethod="linear"
        ))

        # Linea baseline
        baseline_value = baselines.get(task)
        if baseline_value is not None:
            fig.add_shape(
                type="line",
                x0=i - 0.3, x1=i + 0.3,
                y0=baseline_value, y1=baseline_value,
                line=dict(color="black", width=2, dash="dot"),
                xref="x", yref="y"
            )

        # Linea reference GPT-4o
        reference_value = references.get(task)
        if reference_value is not None:
            fig.add_shape(
                type="line",
                x0=i - 0.3, x1=i + 0.3,
                y0=reference_value, y1=reference_value,
                line=dict(color="red", width=2, dash="dashdot"),
                xref="x", yref="y"
            )

    # Layout
    fig.update_layout(
        title="Distribution of Model Accuracy by Task",
        xaxis_title="Task",
        yaxis_title="Combined Performance",
        template="plotly_white",
        boxmode="group",
        dragmode=False,
        font=dict(family="Arial", size=10),
        margin=dict(b=80),
    )

    # Caption
    fig.add_annotation(
        text=(
            "In tasks like TE and SA, models approach the accuracy of supervised <br>"
            "models at EVALITA (dashed black line); in NER and REL they remain lower. <br>"
            "Dashed red lines show GPT-4o reference results for generative tasks."
        ),
        xref="paper", yref="paper",
        x=0.5, y=-0.30,
        showarrow=False,
        font=dict(size=11, color="gray"),
        align="center"
    )

    fig.update_yaxes(range=[0, 100], fixedrange=True)
    fig.update_xaxes(fixedrange=True)

    return fig


def create_medal_assignments(sorted_df):
    """Function for medal assignment logic"""
    medals = {
        'large_fs': False, 'medium_fs': False, 'small_fs': False,
        'large_0shot': False, 'medium_0shot': False, 'small_0shot': False
    }

    new_model_column = []

    for _, row in sorted_df.iterrows():
        model_name = row['Model']
        size = row["Size"]
        is_fs = row['IS_FS']

        if is_fs:  # 5-Few-Shot
            if size == "πŸ”΅πŸ”΅πŸ”΅" and not medals['large_fs']:
                model_name = f"{model_name} πŸ”΅πŸ”΅πŸ”΅πŸ†"
                medals['large_fs'] = True
            elif size == "πŸ”΅πŸ”΅" and not medals['medium_fs']:
                model_name = f"{model_name} πŸ”΅πŸ”΅πŸ†"
                medals['medium_fs'] = True
            elif size == "πŸ”΅" and not medals['small_fs']:
                model_name = f"{model_name} πŸ”΅πŸ†"
                medals['small_fs'] = True
        else:  # 0-Shot
            if size == "πŸ”΅πŸ”΅πŸ”΅" and not medals['large_0shot']:
                model_name = f"{model_name} πŸ”΅πŸ”΅πŸ”΅πŸŽ–οΈ"
                medals['large_0shot'] = True
            elif size == "πŸ”΅πŸ”΅" and not medals['medium_0shot']:
                model_name = f"{model_name} πŸ”΅πŸ”΅πŸŽ–οΈ"
                medals['medium_0shot'] = True
            elif size == "πŸ”΅" and not medals['small_0shot']:
                model_name = f"{model_name} πŸ”΅πŸŽ–οΈ"
                medals['small_0shot'] = True

        new_model_column.append(model_name)

    return new_model_column


def create_leaderboard_base(sorted_dataframe, field_list, hidden_columns):
    """Base leaderboard creation with common parameters. """

    return Leaderboard(
        value=sorted_dataframe,
        datatype=[c.type for c in field_list],
        search_columns=[AutoEvalColumn.model.name],
        hide_columns=hidden_columns,
        filter_columns=[
            ColumnFilter(AutoEvalColumn.fewshot_symbol.name, type="checkboxgroup", label="N-Shot Learning (FS)"),
            ColumnFilter(AutoEvalColumn.params.name, type="slider", min=0, max=100, default=[0, 100],
                         label="Select the number of parameters (B)"),
        ],
        bool_checkboxgroup_label="Evaluation Mode",
        interactive=False,
    )


def init_leaderboard(dataframe, default_selection=None, hidden_columns=None):
    """Leaderboard initialization """
    if dataframe is None or dataframe.empty:
        raise ValueError("Leaderboard DataFrame is empty or None.")

    # Sort and reset index
    sorted_dataframe = dataframe.sort_values(by="Avg. Comb. Perf. ⬆️", ascending=False).reset_index(drop=True)
    sorted_dataframe["Rank"] = sorted_dataframe.index + 1

    # Apply medal assignments
    sorted_dataframe["Model"] = create_medal_assignments(sorted_dataframe)

    # Show the best values for tasks
    sorted_dataframe = highlight_best_per_task(sorted_dataframe)

    field_list = fields(AutoEvalColumn)

    return create_leaderboard_base(sorted_dataframe, field_list, hidden_columns)


def update_task_leaderboard(dataframe, default_selection=None, hidden_columns=None):

    """ Task-specific leaderboard update."""
    if dataframe is None or dataframe.empty:
        raise ValueError("Leaderboard DataFrame is empty or None.")

    # Sort and reset index
    sorted_dataframe = dataframe.sort_values(by="Comb. Perf. ⬆️", ascending=False).reset_index(drop=True)
    sorted_dataframe["Rank"] = sorted_dataframe.index + 1

    # Apply medal assignments
    sorted_dataframe["Model"] = create_medal_assignments(sorted_dataframe)

    field_list = fields(AutoEvalColumn)

    return Leaderboard(
        value=sorted_dataframe,
        datatype=[c.type for c in field_list] + [int],
        search_columns=[AutoEvalColumn.model.name],
        hide_columns=hidden_columns,
        filter_columns=[
            ColumnFilter(AutoEvalColumn.fewshot_symbol.name, type="checkboxgroup", label="N-Shot Learning (FS)"),
            ColumnFilter(AutoEvalColumn.params.name, type="slider", min=0, max=100, default=[0, 100],
                         label="Select the number of parameters (B)"),
        ],
        bool_checkboxgroup_label="Evaluation Mode",
        interactive=False
    )


def download_snapshot(repo, local_dir, max_retries=3):
    """Snapshot download with retry logic."""
    for attempt in range(max_retries):
        try:
            logger.info(f"Downloading from {repo} to {local_dir} (attempt {attempt + 1}/{max_retries})")
            snapshot_download(
                repo_id=repo,
                local_dir=local_dir,
                repo_type="dataset",
                tqdm_class=None,
                etag_timeout=30,
                token=TOKEN
            )
            return True
        except Exception as e:
            logger.error(f"Error downloading {repo} (attempt {attempt + 1}): {e}")
            if attempt == max_retries - 1:
                logger.error(f"Failed to download {repo} after {max_retries} attempts")
                return False
    return False


def restart_space():
    """Restart the Hugging Face space."""
    try:
        logger.info("Restarting space... ")
        API.restart_space(repo_id=REPO_ID)
    except Exception as e:
        logger.error(f"Error restarting space: {e}")


def create_title_html():
    """Function for title HTML."""
    return """

    <div style="display: flex; align-items: center; position: relative; width: 100%; height: 60px; padding: 10px 0;">

        <h1 style="

            margin: 0 auto; 

            font-weight: 900; 

            font-size: 2.5em; 

            letter-spacing: 2px; 

            text-transform: uppercase; 

            background: linear-gradient(90deg, #1f77b4, #00c6ff); 

            -webkit-background-clip: text; 

            -webkit-text-fill-color: transparent; 

            text-shadow: 2px 2px 8px rgba(0,0,0,0.2);

        ">

            EVALITA-LLM Leaderboard

        </h1>

        <a href="https://huggingface.co/spaces/mii-llm/open_ita_llm_leaderboard" target="_blank" 

           style="position: absolute; right: 0; display: inline-flex; align-items: center; gap: 6px; text-decoration: none; color: #1f77b4; font-weight: 600;">

            <svg xmlns="http://www.w3.org/2000/svg" width="22" height="22" fill="#1f77b4" viewBox="0 0 24 24">

                <path d="M3.9 12a5 5 0 0 1 7.07-7.07l1.41 1.41-1.41 1.41-1.42-1.42a3 3 0 1 0 4.24 4.24l3.54-3.54a5 5 0 0 1-7.07 7.07l-1.41-1.41 1.41-1.41 1.42 1.42z"/>

                <path d="M20.1 12a5 5 0 0 1-7.07 7.07l-1.41-1.41 1.41-1.41 1.42 1.42a3 3 0 1 0-4.24-4.24l-3.54 3.54a5 5 0 0 1 7.07-7.07l1.41 1.41-1.41 1.41-1.42-1.42z"/>

            </svg>

            Open Italian LLM Leaderboard

        </a>

    </div>

    """


def create_credits_markdown():
    """Credits section."""
    return """

**This project has benefited from the following support:**



- 🧠 **Codebase**: Based on and extended from the Open Italian LLM Leaderboard, developed by **Alessandro Ercolani** and **Samuele Colombo**. We warmly thank them for their invaluable support and guidance in implementing this leaderboard.



- πŸ’Ά **Funding**: Partially supported by the PNRR project **FAIR - Future AI Research (PE00000013)**, under the NRRP MUR program funded by **NextGenerationEU**.



- πŸ–₯️ **Computation**: We gratefully acknowledge **CINECA** for granting access to the **LEONARDO** supercomputer.

"""


# Main initialization
def initialize_app():
    """Initialize the application ."""
    try:
        # Download snapshots
        queue_success = download_snapshot(QUEUE_REPO, EVAL_REQUESTS_PATH)
        results_success = download_snapshot(RESULTS_REPO, EVAL_RESULTS_PATH)

        if not (queue_success and results_success):
            logger.error("Failed to download required data")
            return None, None, None, None, None

        # Load leaderboard data
        leaderboard_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
        finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = get_evaluation_queue_df(
            EVAL_REQUESTS_PATH, EVAL_COLS)

        # Calculate theoretical max performance
        theoretical_max = theoretical_performance(hash(str(leaderboard_df.values.tobytes())))

        return leaderboard_df, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df, theoretical_max

    except Exception as e:
        logger.error(f"Error initializing app: {e}")
        return None, None, None, None, None


# Initialize data
LEADERBOARD_DF, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df, theoretical_max_combined_perf = initialize_app()

if LEADERBOARD_DF is None:
    # Fallback behavior
    logger.error("Failed to initialize app data")
    theoretical_max_combined_perf = 0.0


def create_gradio_interface():
    """The main Gradio interface."""
    demo = gr.Blocks(css=custom_css)

    with demo:
        # Title
        gr.HTML(create_title_html())
        gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

        # Charts section
        with gr.Row():
            if LEADERBOARD_DF is not None:
                # Note: You'd need to implement these chart functions properly
                gr.Plot(value=create_line_chart(LEADERBOARD_DF), elem_id="line-chart")
                gr.Plot(value=create_boxplot_task(LEADERBOARD_DF, BASELINES, REFERENCES), elem_id="boxplot-task")

        # Tabs
        with gr.Tabs(elem_classes="tab-buttons") as tabs:
            # Main leaderboard tab
            with gr.TabItem("πŸ… Benchmark"):
                if LEADERBOARD_DF is not None:
                    leaderboard = init_leaderboard(
                        LEADERBOARD_DF,
                        default_selection=['Rank', 'Size', 'FS', 'Model', "Avg. Comb. Perf. ⬆️", "TE", "SA", "HS", "AT",
                                           "WIC", "FAQ", "LS", "SU", "NER", "REL"],
                        hidden_columns=[col for col in LEADERBOARD_DF.columns if
                                        col not in ['Rank', 'Size', 'FS', 'Model', "Avg. Comb. Perf. ⬆️", "TE", "SA",
                                                    "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]]
                    )

                    gr.HTML(
                        f"""

                        <div style="

                            border: 2px solid #1f77b4;

                            border-radius: 10px;

                            padding: 10px;

                            background-color: #f0f8ff;

                            font-weight: bold;

                            font-size: 14px;

                            display: inline-block;

                        ">

                            Theoretical performance of a model that scores the highest on every individual task: 

                            <span style="color:#d62728; font-size:18px;">{theoretical_max_combined_perf:.2f}</span>

                        </div>

                        """
                    )

            # About tab
            with gr.TabItem("πŸ“ About"):
                gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")

            with gr.TabItem("β•‘", interactive=False):
                gr.Markdown("", elem_classes="markdown-text")

            # Task-specific tabs
            if LEADERBOARD_DF is not None:
                # Multiple choice tasks
                for task, metadata in TASK_METADATA_MULTIPLECHOICE.items():
                    with gr.TabItem(f"{metadata['icon']}{task}"):
                        task_description = TASK_DESCRIPTIONS.get(task, "Description not available.")
                        gr.Markdown(task_description, elem_classes="markdown-text")

                        leaderboard = update_task_leaderboard(
                            LEADERBOARD_DF.rename(columns={
                                f"{task} Prompt Average": "Prompt Average",
                                f"{task} Prompt Std": "Prompt Std",
                                f"{task} Best Prompt": "Best Prompt",
                                f"{task} Best Prompt Id": "Best Prompt Id",
                                task: "Comb. Perf. ⬆️"
                            }),
                            default_selection=['Rank', 'Size', 'FS', 'Model', 'Comb. Perf. ⬆️', 'Prompt Average',
                                               'Prompt Std', 'Best Prompt', 'Best Prompt Id'],
                            hidden_columns=[col for col in LEADERBOARD_DF.columns if
                                            col not in ['Rank', 'Size', 'FS', 'Model', 'Comb. Perf. ⬆️',
                                                        'Prompt Average', 'Prompt Std', 'Best Prompt',
                                                        'Best Prompt Id']]
                        )

                with gr.TabItem("β”‚", interactive=False):
                    gr.Markdown("", elem_classes="markdown-text")

                # Generative tasks
                for task, metadata in TASK_METADATA_GENERATIVE.items():
                    with gr.TabItem(f"{metadata['icon']}{task}"):
                        task_description = TASK_DESCRIPTIONS.get(task, "Description not available.")
                        gr.Markdown(task_description, elem_classes="markdown-text")

                        leaderboard = update_task_leaderboard(
                            LEADERBOARD_DF.rename(columns={
                                f"{task} Prompt Average": "Prompt Average",
                                f"{task} Prompt Std": "Prompt Std",
                                f"{task} Best Prompt": "Best Prompt",
                                f"{task} Best Prompt Id": "Best Prompt Id",
                                task: "Comb. Perf. ⬆️"
                            }),
                            default_selection=['Rank', 'Size', 'FS', 'Model', 'Comb. Perf. ⬆️', 'Prompt Average',
                                               'Prompt Std', 'Best Prompt', 'Best Prompt Id'],
                            hidden_columns=[col for col in LEADERBOARD_DF.columns if
                                            col not in ['Rank', 'Size', 'FS', 'Model', 'Comb. Perf. ⬆️',
                                                        'Prompt Average', 'Prompt Std', 'Best Prompt',
                                                        'Best Prompt Id']]
                        )

        # Citation and Credits sections
        with gr.Accordion("πŸ“™ Citation", open=False):
            gr.Textbox(
                value=CITATION_BUTTON_TEXT,
                label=CITATION_BUTTON_LABEL,
                lines=20,
                elem_id="citation-button",
                show_copy_button=True
            )

        with gr.Accordion("πŸ“™ Credits", open=False):
            gr.Markdown(create_credits_markdown())

    return demo


# Create and configure the demo
demo = create_gradio_interface()

# Background scheduler for space restart
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()

# Launch configuration
if __name__ == "__main__":
    demo.queue(default_concurrency_limit=40).launch(
        debug=True,
        show_error=True
    )