Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,932 Bytes
5b8270b 8c1d120 5b8270b 1baa0d6 5b8270b 8c1d120 5b8270b 3efd16c b07f8ef 2167bdb b07f8ef 3efd16c b07f8ef 2167bdb b07f8ef 5b8270b a2a7641 89f3c6b a2a7641 cb81188 f00ffec 1baa0d6 f00ffec 5b8270b d4cae39 5b8270b b07f8ef 5b8270b d4cae39 b07f8ef d4cae39 b07f8ef 3efd16c b07f8ef d4cae39 cb81188 d4cae39 5b8270b f00ffec 5b8270b b07f8ef d4cae39 b169466 5b8270b b07f8ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
import gradio as gr
import numpy as np
import spaces
import torch
import random
from PIL import Image
from diffusers import FluxKontextPipeline
from diffusers.utils import load_image
# down to 22 steps to try and keep this ~<30 seconds so it will generally work in claude.ai - which doesn't reset timeout with notifications.
MAX_SEED = np.iinfo(np.int32).max
pipe = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16).to("cuda")
@spaces.GPU
def infer(input_image, prompt, seed=42, randomize_seed=False, guidance_scale=2.5, steps=20, progress=gr.Progress(track_tqdm=True)):
"""
Perform image editing using the FLUX.1 Kontext pipeline.
This function takes an input image and a text prompt to generate a modified version
of the image based on the provided instructions. It uses the FLUX.1 Kontext model
for contextual image editing tasks.
Args:
input_image (PIL.Image.Image): The path to the input image to be edited.
prompt (str): Text description of the desired edit to apply to the image. Examples: "Remove glasses", "Add a hat", "Change background to beach".
seed (int, optional): Random seed for reproducible generation.
Must be between 0 and MAX_SEED (2^31 - 1). Defaults to 42.
randomize_seed (bool, optional): If True, generates a random seed instead of using the provided seed value.
Defaults to False.
guidance_scale (float, optional): Controls how closely the model follows the prompt. Higher values mean stronger adherence to the prompt but may reduce image quality. Range: 1.0-10.0. Defaults to 2.5.
steps (int, optional): Controls how many steps to run the diffusion model for.
Range: 1-30. Defaults to 20.
progress (gr.Progress, optional): Gradio progress tracker for monitoring
generation progress. Defaults to gr.Progress(track_tqdm=True).
Returns:
The modified image and seed used for generation.
"""
if randomize_seed:
seed = random.randint(0, MAX_SEED)
if input_image:
input_image = input_image.convert("RGB")
image = pipe(
image=input_image,
prompt=prompt,
guidance_scale=guidance_scale,
width = input_image.size[0],
height = input_image.size[1],
num_inference_steps=steps,
generator=torch.Generator().manual_seed(seed),
).images[0]
else:
image = pipe(
prompt=prompt,
guidance_scale=guidance_scale,
num_inference_steps=steps,
generator=torch.Generator().manual_seed(seed),
).images[0]
return image, seed, gr.Button(visible=True)
@spaces.GPU(duration=25)
def infer_example(input_image, prompt):
image, seed, _ = infer(input_image, prompt)
return image, seed
css="""
#col-container {
margin: 0 auto;
max-width: 960px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""# FLUX.1 Kontext [dev]
Image editing and manipulation model guidance-distilled from FLUX.1 Kontext [pro], [[blog]](https://bfl.ai/announcements/flux-1-kontext-dev) [[model]](https://huggingface.co/black-forest-labs/FLUX.1-Kontext-dev)
""")
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Upload the image for editing", type="pil")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt for editing (e.g., 'Remove glasses', 'Add a hat')",
container=False,
)
run_button = gr.Button("Run", scale=0)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=10,
step=0.1,
value=2.5,
)
steps = gr.Slider(
label="Steps",
minimum=1,
maximum=30,
value=20,
step=1
)
with gr.Column():
result = gr.Image(label="Result", show_label=False, interactive=False)
reuse_button = gr.Button("Reuse this image", visible=False)
examples = gr.Examples(
examples=[
["flowers.png", "turn the flowers into sunflowers"],
["monster.png", "make this monster ride a skateboard on the beach"],
["cat.png", "make this cat happy"]
],
inputs=[input_image, prompt],
outputs=[result, seed],
fn=infer_example,
cache_examples="lazy"
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn = infer,
inputs = [input_image, prompt, seed, randomize_seed, guidance_scale, steps],
outputs = [result, seed, reuse_button]
)
# reuse_button.click(
# fn = lambda image: image,
# inputs = [result],
# outputs = [input_image]
# )
demo.launch(mcp_server=True) |