File size: 5,932 Bytes
5b8270b
 
 
 
 
 
8c1d120
 
5b8270b
 
1baa0d6
 
5b8270b
 
8c1d120
5b8270b
 
3efd16c
b07f8ef
 
 
 
 
 
 
 
2167bdb
 
 
 
 
 
 
b07f8ef
3efd16c
b07f8ef
 
 
 
2167bdb
b07f8ef
5b8270b
 
a2a7641
 
 
 
 
 
 
89f3c6b
 
a2a7641
 
 
 
 
 
 
 
 
 
cb81188
f00ffec
1baa0d6
f00ffec
 
 
5b8270b
 
 
 
d4cae39
5b8270b
 
 
 
 
 
 
b07f8ef
5b8270b
 
d4cae39
 
 
 
 
 
 
 
 
 
 
 
b07f8ef
d4cae39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b07f8ef
 
 
 
3efd16c
b07f8ef
 
 
d4cae39
cb81188
d4cae39
5b8270b
f00ffec
 
 
 
 
 
 
 
 
 
 
 
 
5b8270b
 
 
b07f8ef
d4cae39
 
b169466
 
 
 
 
 
5b8270b
b07f8ef
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import gradio as gr
import numpy as np
import spaces
import torch
import random
from PIL import Image

from diffusers import FluxKontextPipeline
from diffusers.utils import load_image

# down to 22 steps to try and keep this ~<30 seconds so it will generally work in claude.ai - which doesn't reset timeout with notifications.

MAX_SEED = np.iinfo(np.int32).max

pipe = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16).to("cuda")

@spaces.GPU
def infer(input_image, prompt, seed=42, randomize_seed=False, guidance_scale=2.5, steps=20, progress=gr.Progress(track_tqdm=True)):
    """
    Perform image editing using the FLUX.1 Kontext pipeline.
    
    This function takes an input image and a text prompt to generate a modified version
    of the image based on the provided instructions. It uses the FLUX.1 Kontext model
    for contextual image editing tasks.
    
    Args:
        input_image (PIL.Image.Image): The path to the input image to be edited.
        prompt (str): Text description of the desired edit to apply to the image. Examples: "Remove glasses", "Add a hat", "Change background to beach".
        seed (int, optional): Random seed for reproducible generation. 
            Must be between 0 and MAX_SEED (2^31 - 1). Defaults to 42.
        randomize_seed (bool, optional): If True, generates a random seed instead of using the provided seed value. 
            Defaults to False.
        guidance_scale (float, optional): Controls how closely the model follows the prompt. Higher values mean stronger adherence to the prompt but may reduce image quality. Range: 1.0-10.0. Defaults to 2.5.
        steps (int, optional): Controls how many steps to run the diffusion model for.
            Range: 1-30. Defaults to 20.
        progress (gr.Progress, optional): Gradio progress tracker for monitoring
            generation progress. Defaults to gr.Progress(track_tqdm=True).
    
    Returns:
        The modified image and seed used for generation.
    """
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    
    if input_image:
        input_image = input_image.convert("RGB")
        image = pipe(
            image=input_image, 
            prompt=prompt,
            guidance_scale=guidance_scale,
            width = input_image.size[0],
            height = input_image.size[1],
            num_inference_steps=steps,
            generator=torch.Generator().manual_seed(seed),
        ).images[0]
    else:
        image = pipe(
            prompt=prompt,
            guidance_scale=guidance_scale,
            num_inference_steps=steps,
            generator=torch.Generator().manual_seed(seed),
        ).images[0]
    return image, seed, gr.Button(visible=True)

@spaces.GPU(duration=25)
def infer_example(input_image, prompt):
    image, seed, _ = infer(input_image, prompt)
    return image, seed

css="""
#col-container {
    margin: 0 auto;
    max-width: 960px;
}
"""

with gr.Blocks(css=css) as demo:
    
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""# FLUX.1 Kontext [dev]
Image editing and manipulation model guidance-distilled from FLUX.1 Kontext [pro], [[blog]](https://bfl.ai/announcements/flux-1-kontext-dev) [[model]](https://huggingface.co/black-forest-labs/FLUX.1-Kontext-dev)
        """)
        with gr.Row():
            with gr.Column():
                input_image = gr.Image(label="Upload the image for editing", type="pil")
                with gr.Row():
                    prompt = gr.Text(
                        label="Prompt",
                        show_label=False,
                        max_lines=1,
                        placeholder="Enter your prompt for editing (e.g., 'Remove glasses', 'Add a hat')",
                        container=False,
                    )
                    run_button = gr.Button("Run", scale=0)
                with gr.Accordion("Advanced Settings", open=False):
                    
                    seed = gr.Slider(
                        label="Seed",
                        minimum=0,
                        maximum=MAX_SEED,
                        step=1,
                        value=0,
                    )
                    
                    randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
                    
                    guidance_scale = gr.Slider(
                        label="Guidance Scale",
                        minimum=1,
                        maximum=10,
                        step=0.1,
                        value=2.5,
                    )       
                    
                    steps = gr.Slider(
                        label="Steps",
                        minimum=1,
                        maximum=30,
                        value=20,
                        step=1
                    )
                    
            with gr.Column():
                result = gr.Image(label="Result", show_label=False, interactive=False)
                reuse_button = gr.Button("Reuse this image", visible=False)
        
            
        examples = gr.Examples(
            examples=[
                ["flowers.png", "turn the flowers into sunflowers"],
                ["monster.png", "make this monster ride a skateboard on the beach"],
                ["cat.png", "make this cat happy"]
            ],
            inputs=[input_image, prompt],
            outputs=[result, seed],
            fn=infer_example,
            cache_examples="lazy"
        )
            
    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn = infer,
        inputs = [input_image, prompt, seed, randomize_seed, guidance_scale, steps],
        outputs = [result, seed, reuse_button]
    )
    
    # reuse_button.click(
    #    fn = lambda image: image,
    #    inputs = [result],
    #    outputs = [input_image]
    # )

demo.launch(mcp_server=True)