File size: 4,950 Bytes
f1d7582
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a39ecb
 
 
f1d7582
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a39ecb
 
 
 
 
 
 
 
 
 
f1d7582
ddd5852
8a39ecb
 
 
 
 
ddd5852
f1d7582
 
 
8a39ecb
f1d7582
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a39ecb
f1d7582
 
 
 
8a39ecb
 
 
f1d7582
 
 
 
 
8a39ecb
f1d7582
 
 
 
 
 
 
 
 
8a39ecb
f1d7582
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# Copyright 2022 The HuggingFace Datasets Authors and the current metric script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""FrugalScore metric."""

from dataclasses import dataclass
from typing import Optional

import datasets
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer, Trainer, TrainingArguments

import evaluate


_CITATION = """\
@article{eddine2021frugalscore,
  title={FrugalScore: Learning Cheaper, Lighter and Faster Evaluation Metrics for Automatic Text Generation},
  author={Eddine, Moussa Kamal and Shang, Guokan and Tixier, Antoine J-P and Vazirgiannis, Michalis},
  journal={arXiv preprint arXiv:2110.08559},
  year={2021}
}
"""

_DESCRIPTION = """\
FrugalScore is a reference-based metric for NLG models evaluation. It is based on a distillation approach that allows to learn a fixed, low cost version of any expensive NLG metric, while retaining most of its original performance.
"""


_KWARGS_DESCRIPTION = """
Calculates how good are predictions given some references, using certain scores.
Args:
    predictions (list of str): list of predictions to score. Each predictions
        should be a string.
    references (list of str): list of reference for each prediction. Each
        reference should be a string.
    batch_size (int): the batch size for predictions.
    max_length (int): maximum sequence length.
    device (str): either gpu or cpu
Returns:
    scores (list of int): list of scores.
Examples:
    >>> frugalscore = evaluate.load("frugalscore")
    >>> results = frugalscore.compute(predictions=['hello there', 'huggingface'], references=['hello world', 'hugging face'])
    >>> print([round(s, 3) for s in results["scores"]])
    [0.631, 0.645]
"""


@dataclass
class FRUGALSCOREConfig(evaluate.info.Config):

    name: str = "default"

    batch_size: int = 32
    max_length: int = 128
    device: Optional[str] = None


@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class FRUGALSCORE(evaluate.Metric):

    CONFIG_CLASS = FRUGALSCOREConfig
    ALLOWED_CONFIG_NAMES = ["default"]

    def _info(self, config):
        return evaluate.MetricInfo(
            description=_DESCRIPTION,
            citation=_CITATION,
            inputs_description=_KWARGS_DESCRIPTION,
            config=config,
            features=datasets.Features(
                {
                    "predictions": datasets.Value("string"),
                    "references": datasets.Value("string"),
                }
            ),
            homepage="https://github.com/moussaKam/FrugalScore",
        )

    def _download_and_prepare(self, dl_manager):
        if self.config_name == "default":
            checkpoint = "moussaKam/frugalscore_tiny_bert-base_bert-score"
        else:
            checkpoint = self.config_name
        self.model = AutoModelForSequenceClassification.from_pretrained(checkpoint)
        self.tokenizer = AutoTokenizer.from_pretrained(checkpoint)

    def _compute(self, predictions, references):
        """Returns the scores"""
        assert len(predictions) == len(
            references
        ), "predictions and references should have the same number of sentences."
        if self.config.device is not None:
            assert self.config.device in ["gpu", "cpu"], "device should be either gpu or cpu."
            device = self.config.device
        else:
            device = "gpu" if torch.cuda.is_available() else "cpu"
        training_args = TrainingArguments(
            "trainer",
            fp16=(device == "gpu"),
            per_device_eval_batch_size=self.config.batch_size,
            report_to="all",
            no_cuda=(device == "cpu"),
            log_level="warning",
        )
        dataset = {"sentence1": predictions, "sentence2": references}
        raw_datasets = datasets.Dataset.from_dict(dataset)

        def tokenize_function(data):
            return self.tokenizer(
                data["sentence1"], data["sentence2"], max_length=self.config.max_length, truncation=True, padding=True
            )

        tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)
        tokenized_datasets.remove_columns(["sentence1", "sentence2"])
        trainer = Trainer(self.model, training_args, tokenizer=self.tokenizer)
        predictions = trainer.predict(tokenized_datasets)
        return {"scores": list(predictions.predictions.squeeze(-1))}