Spaces:
Running
Running
Update Space (evaluate main: 2c6d460a)
Browse files- README.md +111 -6
- app.py +7 -0
- poseval.py +113 -0
- requirements.txt +3 -0
README.md
CHANGED
|
@@ -1,12 +1,117 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version: 3.
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
---
|
| 11 |
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
title: poseval
|
| 3 |
+
emoji: 🤗
|
| 4 |
+
colorFrom: blue
|
| 5 |
+
colorTo: red
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 3.0.2
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
+
tags:
|
| 11 |
+
- evaluate
|
| 12 |
+
- metric
|
| 13 |
+
description: >-
|
| 14 |
+
The poseval metric can be used to evaluate POS taggers. Since seqeval does not work well with POS data
|
| 15 |
+
that is not in IOB format the poseval is an alternative. It treats each token in the dataset as independant
|
| 16 |
+
observation and computes the precision, recall and F1-score irrespective of sentences. It uses scikit-learns's
|
| 17 |
+
classification report to compute the scores.
|
| 18 |
---
|
| 19 |
|
| 20 |
+
# Metric Card for peqeval
|
| 21 |
+
|
| 22 |
+
## Metric description
|
| 23 |
+
|
| 24 |
+
The poseval metric can be used to evaluate POS taggers. Since seqeval does not work well with POS data (see e.g. [here](https://stackoverflow.com/questions/71327693/how-to-disable-seqeval-label-formatting-for-pos-tagging)) that is not in IOB format the poseval is an alternative. It treats each token in the dataset as independant observation and computes the precision, recall and F1-score irrespective of sentences. It uses scikit-learns's [classification report](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html) to compute the scores.
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
## How to use
|
| 28 |
+
|
| 29 |
+
Poseval produces labelling scores along with its sufficient statistics from a source against references.
|
| 30 |
+
|
| 31 |
+
It takes two mandatory arguments:
|
| 32 |
+
|
| 33 |
+
`predictions`: a list of lists of predicted labels, i.e. estimated targets as returned by a tagger.
|
| 34 |
+
|
| 35 |
+
`references`: a list of lists of reference labels, i.e. the ground truth/target values.
|
| 36 |
+
|
| 37 |
+
It can also take several optional arguments:
|
| 38 |
+
|
| 39 |
+
`zero_division`: Which value to substitute as a metric value when encountering zero division. Should be one of [`0`,`1`,`"warn"`]. `"warn"` acts as `0`, but the warning is raised.
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
```python
|
| 43 |
+
>>> predictions = [['INTJ', 'ADP', 'PROPN', 'NOUN', 'PUNCT', 'INTJ', 'ADP', 'PROPN', 'VERB', 'SYM']]
|
| 44 |
+
>>> references = [['INTJ', 'ADP', 'PROPN', 'PROPN', 'PUNCT', 'INTJ', 'ADP', 'PROPN', 'PROPN', 'SYM']]
|
| 45 |
+
>>> poseval = evaluate.load("poseval")
|
| 46 |
+
>>> results = poseval.compute(predictions=predictions, references=references)
|
| 47 |
+
>>> print(list(results.keys()))
|
| 48 |
+
['ADP', 'INTJ', 'NOUN', 'PROPN', 'PUNCT', 'SYM', 'VERB', 'accuracy', 'macro avg', 'weighted avg']
|
| 49 |
+
>>> print(results["accuracy"])
|
| 50 |
+
0.8
|
| 51 |
+
>>> print(results["PROPN"]["recall"])
|
| 52 |
+
0.5
|
| 53 |
+
```
|
| 54 |
+
|
| 55 |
+
## Output values
|
| 56 |
+
|
| 57 |
+
This metric returns a a classification report as a dictionary with a summary of scores for overall and per type:
|
| 58 |
+
|
| 59 |
+
Overall (weighted and macro avg):
|
| 60 |
+
|
| 61 |
+
`accuracy`: the average [accuracy](https://huggingface.co/metrics/accuracy), on a scale between 0.0 and 1.0.
|
| 62 |
+
|
| 63 |
+
`precision`: the average [precision](https://huggingface.co/metrics/precision), on a scale between 0.0 and 1.0.
|
| 64 |
+
|
| 65 |
+
`recall`: the average [recall](https://huggingface.co/metrics/recall), on a scale between 0.0 and 1.0.
|
| 66 |
+
|
| 67 |
+
`f1`: the average [F1 score](https://huggingface.co/metrics/f1), which is the harmonic mean of the precision and recall. It also has a scale of 0.0 to 1.0.
|
| 68 |
+
|
| 69 |
+
Per type (e.g. `MISC`, `PER`, `LOC`,...):
|
| 70 |
+
|
| 71 |
+
`precision`: the average [precision](https://huggingface.co/metrics/precision), on a scale between 0.0 and 1.0.
|
| 72 |
+
|
| 73 |
+
`recall`: the average [recall](https://huggingface.co/metrics/recall), on a scale between 0.0 and 1.0.
|
| 74 |
+
|
| 75 |
+
`f1`: the average [F1 score](https://huggingface.co/metrics/f1), on a scale between 0.0 and 1.0.
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
## Examples
|
| 79 |
+
|
| 80 |
+
```python
|
| 81 |
+
>>> predictions = [['INTJ', 'ADP', 'PROPN', 'NOUN', 'PUNCT', 'INTJ', 'ADP', 'PROPN', 'VERB', 'SYM']]
|
| 82 |
+
>>> references = [['INTJ', 'ADP', 'PROPN', 'PROPN', 'PUNCT', 'INTJ', 'ADP', 'PROPN', 'PROPN', 'SYM']]
|
| 83 |
+
>>> poseval = evaluate.load("poseval")
|
| 84 |
+
>>> results = poseval.compute(predictions=predictions, references=references)
|
| 85 |
+
>>> print(list(results.keys()))
|
| 86 |
+
['ADP', 'INTJ', 'NOUN', 'PROPN', 'PUNCT', 'SYM', 'VERB', 'accuracy', 'macro avg', 'weighted avg']
|
| 87 |
+
>>> print(results["accuracy"])
|
| 88 |
+
0.8
|
| 89 |
+
>>> print(results["PROPN"]["recall"])
|
| 90 |
+
0.5
|
| 91 |
+
```
|
| 92 |
+
|
| 93 |
+
## Limitations and bias
|
| 94 |
+
|
| 95 |
+
In contrast to [seqeval](https://github.com/chakki-works/seqeval), the poseval metric treats each token independently and computes the classification report over all concatenated sequences..
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
## Citation
|
| 99 |
+
|
| 100 |
+
```bibtex
|
| 101 |
+
@article{scikit-learn,
|
| 102 |
+
title={Scikit-learn: Machine Learning in {P}ython},
|
| 103 |
+
author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
|
| 104 |
+
and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
|
| 105 |
+
and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
|
| 106 |
+
Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},
|
| 107 |
+
journal={Journal of Machine Learning Research},
|
| 108 |
+
volume={12},
|
| 109 |
+
pages={2825--2830},
|
| 110 |
+
year={2011}
|
| 111 |
+
}
|
| 112 |
+
```
|
| 113 |
+
|
| 114 |
+
## Further References
|
| 115 |
+
- [README for seqeval at GitHub](https://github.com/chakki-works/seqeval)
|
| 116 |
+
- [Classification report](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html)
|
| 117 |
+
- [Issues with seqeval](https://stackoverflow.com/questions/71327693/how-to-disable-seqeval-label-formatting-for-pos-tagging)
|
app.py
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import evaluate
|
| 2 |
+
from evaluate.utils import launch_gradio_widget
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
module = evaluate.load("poseval")
|
| 6 |
+
|
| 7 |
+
launch_gradio_widget(module)
|
poseval.py
ADDED
|
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2022 The HuggingFace Evaluate Authors.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
""" seqeval metric. """
|
| 15 |
+
|
| 16 |
+
from typing import Union
|
| 17 |
+
|
| 18 |
+
import datasets
|
| 19 |
+
from sklearn.metrics import classification_report
|
| 20 |
+
|
| 21 |
+
import evaluate
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
_CITATION = """\
|
| 25 |
+
@article{scikit-learn,
|
| 26 |
+
title={Scikit-learn: Machine Learning in {P}ython},
|
| 27 |
+
author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
|
| 28 |
+
and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
|
| 29 |
+
and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
|
| 30 |
+
Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},
|
| 31 |
+
journal={Journal of Machine Learning Research},
|
| 32 |
+
volume={12},
|
| 33 |
+
pages={2825--2830},
|
| 34 |
+
year={2011}
|
| 35 |
+
}
|
| 36 |
+
"""
|
| 37 |
+
|
| 38 |
+
_DESCRIPTION = """\
|
| 39 |
+
The poseval metric can be used to evaluate POS taggers. Since seqeval does not work well with POS data \
|
| 40 |
+
(see e.g. [here](https://stackoverflow.com/questions/71327693/how-to-disable-seqeval-label-formatting-for-pos-tagging))\
|
| 41 |
+
that is not in IOB format the poseval metric is an alternative. It treats each token in the dataset as independant \
|
| 42 |
+
observation and computes the precision, recall and F1-score irrespective of sentences. It uses scikit-learns's \
|
| 43 |
+
[classification report](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html) \
|
| 44 |
+
to compute the scores.
|
| 45 |
+
|
| 46 |
+
"""
|
| 47 |
+
|
| 48 |
+
_KWARGS_DESCRIPTION = """
|
| 49 |
+
Computes the poseval metric.
|
| 50 |
+
|
| 51 |
+
Args:
|
| 52 |
+
predictions: List of List of predicted labels (Estimated targets as returned by a tagger)
|
| 53 |
+
references: List of List of reference labels (Ground truth (correct) target values)
|
| 54 |
+
zero_division: Which value to substitute as a metric value when encountering zero division. Should be on of 0, 1,
|
| 55 |
+
"warn". "warn" acts as 0, but the warning is raised.
|
| 56 |
+
|
| 57 |
+
Returns:
|
| 58 |
+
'scores': dict. Summary of the scores for overall and per type
|
| 59 |
+
Overall (weighted and macro avg):
|
| 60 |
+
'accuracy': accuracy,
|
| 61 |
+
'precision': precision,
|
| 62 |
+
'recall': recall,
|
| 63 |
+
'f1': F1 score, also known as balanced F-score or F-measure,
|
| 64 |
+
Per type:
|
| 65 |
+
'precision': precision,
|
| 66 |
+
'recall': recall,
|
| 67 |
+
'f1': F1 score, also known as balanced F-score or F-measure
|
| 68 |
+
Examples:
|
| 69 |
+
|
| 70 |
+
>>> predictions = [['INTJ', 'ADP', 'PROPN', 'NOUN', 'PUNCT', 'INTJ', 'ADP', 'PROPN', 'VERB', 'SYM']]
|
| 71 |
+
>>> references = [['INTJ', 'ADP', 'PROPN', 'PROPN', 'PUNCT', 'INTJ', 'ADP', 'PROPN', 'PROPN', 'SYM']]
|
| 72 |
+
>>> poseval = evaluate.load("poseval")
|
| 73 |
+
>>> results = poseval.compute(predictions=predictions, references=references)
|
| 74 |
+
>>> print(list(results.keys()))
|
| 75 |
+
['ADP', 'INTJ', 'NOUN', 'PROPN', 'PUNCT', 'SYM', 'VERB', 'accuracy', 'macro avg', 'weighted avg']
|
| 76 |
+
>>> print(results["accuracy"])
|
| 77 |
+
0.8
|
| 78 |
+
>>> print(results["PROPN"]["recall"])
|
| 79 |
+
0.5
|
| 80 |
+
"""
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
| 84 |
+
class Poseval(evaluate.Metric):
|
| 85 |
+
def _info(self):
|
| 86 |
+
return evaluate.MetricInfo(
|
| 87 |
+
description=_DESCRIPTION,
|
| 88 |
+
citation=_CITATION,
|
| 89 |
+
homepage="https://scikit-learn.org",
|
| 90 |
+
inputs_description=_KWARGS_DESCRIPTION,
|
| 91 |
+
features=datasets.Features(
|
| 92 |
+
{
|
| 93 |
+
"predictions": datasets.Sequence(datasets.Value("string", id="label"), id="sequence"),
|
| 94 |
+
"references": datasets.Sequence(datasets.Value("string", id="label"), id="sequence"),
|
| 95 |
+
}
|
| 96 |
+
),
|
| 97 |
+
codebase_urls=["https://github.com/scikit-learn/scikit-learn"],
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
def _compute(
|
| 101 |
+
self,
|
| 102 |
+
predictions,
|
| 103 |
+
references,
|
| 104 |
+
zero_division: Union[str, int] = "warn",
|
| 105 |
+
):
|
| 106 |
+
report = classification_report(
|
| 107 |
+
y_true=[label for ref in references for label in ref],
|
| 108 |
+
y_pred=[label for pred in predictions for label in pred],
|
| 109 |
+
output_dict=True,
|
| 110 |
+
zero_division=zero_division,
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
return report
|
requirements.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
git+https://github.com/huggingface/evaluate@a45df1eb9996eec64ec3282ebe554061cb366388
|
| 2 |
+
datasets~=2.0
|
| 3 |
+
scikit-learn
|