Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -23,9 +23,12 @@ def load_models_data():
|
|
23 |
dataset_dict = load_dataset(HF_DATASET_ID)
|
24 |
df = dataset_dict[list(dataset_dict.keys())[0]].to_pandas()
|
25 |
if 'params' in df.columns:
|
26 |
-
|
|
|
|
|
27 |
else:
|
28 |
-
|
|
|
29 |
msg = f"Successfully loaded dataset in {time.time() - overall_start_time:.2f}s."
|
30 |
print(msg)
|
31 |
return df, True, msg
|
@@ -40,9 +43,15 @@ def get_param_range_values(param_range_labels):
|
|
40 |
max_val = float('inf') if '>' in max_label else float(max_label.replace('B', ''))
|
41 |
return min_val, max_val
|
42 |
|
43 |
-
def make_treemap_data(df, count_by, top_k=25, tag_filter=None, pipeline_filter=None, param_range=None, skip_orgs=None):
|
44 |
if df is None or df.empty: return pd.DataFrame()
|
45 |
filtered_df = df.copy()
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
col_map = { "Audio & Speech": "is_audio_speech", "Music": "has_music", "Robotics": "has_robot", "Biomedical": "is_biomed", "Time series": "has_series", "Sciences": "has_science", "Video": "has_video", "Images": "has_image", "Text": "has_text" }
|
47 |
if tag_filter and tag_filter in col_map and col_map[tag_filter] in filtered_df.columns:
|
48 |
filtered_df = filtered_df[filtered_df[col_map[tag_filter]]]
|
@@ -51,9 +60,12 @@ def make_treemap_data(df, count_by, top_k=25, tag_filter=None, pipeline_filter=N
|
|
51 |
if param_range:
|
52 |
min_params, max_params = get_param_range_values(param_range)
|
53 |
is_default_range = (param_range[0] == PARAM_CHOICES[0] and param_range[1] == PARAM_CHOICES[-1])
|
|
|
|
|
54 |
if not is_default_range and 'params' in filtered_df.columns:
|
55 |
if min_params is not None: filtered_df = filtered_df[filtered_df['params'] >= min_params]
|
56 |
if max_params is not None and max_params != float('inf'): filtered_df = filtered_df[filtered_df['params'] < max_params]
|
|
|
57 |
if skip_orgs and len(skip_orgs) > 0 and "organization" in filtered_df.columns:
|
58 |
filtered_df = filtered_df[~filtered_df["organization"].isin(skip_orgs)]
|
59 |
if filtered_df.empty: return pd.DataFrame()
|
@@ -82,7 +94,6 @@ custom_css = """
|
|
82 |
#param-slider-wrapper div[data-testid="range-slider"] > span {
|
83 |
display: none !important;
|
84 |
}
|
85 |
-
|
86 |
/*
|
87 |
THIS IS THE KEY FIX:
|
88 |
We target all the individual component containers (divs with class .block)
|
@@ -129,6 +140,8 @@ with gr.Blocks(title="🤗 ModelVerse Explorer", fill_width=True, css=custom_css
|
|
129 |
elem_id="param-slider-wrapper"
|
130 |
)
|
131 |
param_range_display = gr.Markdown(f"Range: `{PARAM_CHOICES[0]}` to `{PARAM_CHOICES[-1]}`")
|
|
|
|
|
132 |
|
133 |
# This section remains un-grouped
|
134 |
top_k_dropdown = gr.Dropdown(label="Number of Top Organizations", choices=TOP_K_CHOICES, value=25)
|
@@ -166,8 +179,11 @@ with gr.Blocks(title="🤗 ModelVerse Explorer", fill_width=True, css=custom_css
|
|
166 |
if 'data_download_timestamp' in current_df.columns and pd.notna(current_df['data_download_timestamp'].iloc[0]):
|
167 |
ts = pd.to_datetime(current_df['data_download_timestamp'].iloc[0], utc=True)
|
168 |
date_display = ts.strftime('%B %d, %Y, %H:%M:%S %Z')
|
169 |
-
|
170 |
-
|
|
|
|
|
|
|
171 |
else:
|
172 |
data_info_text = f"### Data Load Failed\n- {status_msg_from_load}"
|
173 |
except Exception as e:
|
@@ -178,7 +194,6 @@ with gr.Blocks(title="🤗 ModelVerse Explorer", fill_width=True, css=custom_css
|
|
178 |
print(f"Critical error in load_and_generate_initial_plot: {e}")
|
179 |
|
180 |
# --- Part 2: Generate Initial Plot ---
|
181 |
-
# We call the existing plot generation function with the default values from the UI
|
182 |
progress(0.6, desc="Generating initial plot...")
|
183 |
# Get default values directly from the UI component definitions
|
184 |
default_metric = "downloads"
|
@@ -188,18 +203,20 @@ with gr.Blocks(title="🤗 ModelVerse Explorer", fill_width=True, css=custom_css
|
|
188 |
default_param_indices = PARAM_CHOICES_DEFAULT_INDICES
|
189 |
default_k = 25
|
190 |
default_skip_orgs = "TheBloke,MaziyarPanahi,unsloth,modularai,Gensyn,bartowski"
|
|
|
|
|
191 |
|
192 |
# Reuse the existing controller function for plotting
|
193 |
initial_plot, initial_status = ui_generate_plot_controller(
|
194 |
default_metric, default_filter_type, default_tag, default_pipeline,
|
195 |
-
default_param_indices, default_k, default_skip_orgs, current_df, progress
|
196 |
)
|
197 |
|
198 |
# Return all the necessary updates for the UI
|
199 |
return current_df, load_success_flag, data_info_text, initial_status, initial_plot
|
200 |
|
201 |
def ui_generate_plot_controller(metric_choice, filter_type, tag_choice, pipeline_choice,
|
202 |
-
param_range_indices, k_orgs, skip_orgs_input, df_current_models, progress=gr.Progress()):
|
203 |
if df_current_models is None or df_current_models.empty:
|
204 |
return create_treemap(pd.DataFrame(), metric_choice, "Error: Model Data Not Loaded"), "Model data is not loaded. Cannot generate plot."
|
205 |
|
@@ -212,7 +229,16 @@ with gr.Blocks(title="🤗 ModelVerse Explorer", fill_width=True, css=custom_css
|
|
212 |
max_label = PARAM_CHOICES[int(param_range_indices[1])]
|
213 |
param_labels_for_filtering = [min_label, max_label]
|
214 |
|
215 |
-
treemap_df = make_treemap_data(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
216 |
|
217 |
progress(0.7, desc="Generating plot...")
|
218 |
title_labels = {"downloads": "Downloads (last 30 days)", "downloadsAllTime": "Downloads (All Time)", "likes": "Likes"}
|
@@ -237,7 +263,7 @@ with gr.Blocks(title="🤗 ModelVerse Explorer", fill_width=True, css=custom_css
|
|
237 |
generate_plot_button.click(
|
238 |
fn=ui_generate_plot_controller,
|
239 |
inputs=[count_by_dropdown, filter_choice_radio, tag_filter_dropdown, pipeline_filter_dropdown,
|
240 |
-
param_range_slider, top_k_dropdown, skip_orgs_textbox, models_data_state],
|
241 |
outputs=[plot_output, status_message_md]
|
242 |
)
|
243 |
|
|
|
23 |
dataset_dict = load_dataset(HF_DATASET_ID)
|
24 |
df = dataset_dict[list(dataset_dict.keys())[0]].to_pandas()
|
25 |
if 'params' in df.columns:
|
26 |
+
# IMPORTANT CHANGE: Fill NaN/coerce errors with -1 to signify unknown size
|
27 |
+
# This aligns with the utility function's return of -1.0 for unknown sizes.
|
28 |
+
df['params'] = pd.to_numeric(df['params'], errors='coerce').fillna(-1)
|
29 |
else:
|
30 |
+
# If 'params' column doesn't exist, assume all are unknown
|
31 |
+
df['params'] = -1
|
32 |
msg = f"Successfully loaded dataset in {time.time() - overall_start_time:.2f}s."
|
33 |
print(msg)
|
34 |
return df, True, msg
|
|
|
43 |
max_val = float('inf') if '>' in max_label else float(max_label.replace('B', ''))
|
44 |
return min_val, max_val
|
45 |
|
46 |
+
def make_treemap_data(df, count_by, top_k=25, tag_filter=None, pipeline_filter=None, param_range=None, skip_orgs=None, include_unknown_param_size=True):
|
47 |
if df is None or df.empty: return pd.DataFrame()
|
48 |
filtered_df = df.copy()
|
49 |
+
|
50 |
+
# New: Filter based on unknown parameter size
|
51 |
+
# If include_unknown_param_size is False, exclude models where params is -1 (unknown)
|
52 |
+
if not include_unknown_param_size and 'params' in filtered_df.columns:
|
53 |
+
filtered_df = filtered_df[filtered_df['params'] != -1]
|
54 |
+
|
55 |
col_map = { "Audio & Speech": "is_audio_speech", "Music": "has_music", "Robotics": "has_robot", "Biomedical": "is_biomed", "Time series": "has_series", "Sciences": "has_science", "Video": "has_video", "Images": "has_image", "Text": "has_text" }
|
56 |
if tag_filter and tag_filter in col_map and col_map[tag_filter] in filtered_df.columns:
|
57 |
filtered_df = filtered_df[filtered_df[col_map[tag_filter]]]
|
|
|
60 |
if param_range:
|
61 |
min_params, max_params = get_param_range_values(param_range)
|
62 |
is_default_range = (param_range[0] == PARAM_CHOICES[0] and param_range[1] == PARAM_CHOICES[-1])
|
63 |
+
# Apply parameter range filter only if it's not the default (all range) AND params column exists
|
64 |
+
# This filter will naturally exclude -1 if the min_params is >= 0, as it should.
|
65 |
if not is_default_range and 'params' in filtered_df.columns:
|
66 |
if min_params is not None: filtered_df = filtered_df[filtered_df['params'] >= min_params]
|
67 |
if max_params is not None and max_params != float('inf'): filtered_df = filtered_df[filtered_df['params'] < max_params]
|
68 |
+
|
69 |
if skip_orgs and len(skip_orgs) > 0 and "organization" in filtered_df.columns:
|
70 |
filtered_df = filtered_df[~filtered_df["organization"].isin(skip_orgs)]
|
71 |
if filtered_df.empty: return pd.DataFrame()
|
|
|
94 |
#param-slider-wrapper div[data-testid="range-slider"] > span {
|
95 |
display: none !important;
|
96 |
}
|
|
|
97 |
/*
|
98 |
THIS IS THE KEY FIX:
|
99 |
We target all the individual component containers (divs with class .block)
|
|
|
140 |
elem_id="param-slider-wrapper"
|
141 |
)
|
142 |
param_range_display = gr.Markdown(f"Range: `{PARAM_CHOICES[0]}` to `{PARAM_CHOICES[-1]}`")
|
143 |
+
# New: Checkbox for including unknown parameter sizes
|
144 |
+
include_unknown_params_checkbox = gr.Checkbox(label="Include models with unknown parameter size", value=True)
|
145 |
|
146 |
# This section remains un-grouped
|
147 |
top_k_dropdown = gr.Dropdown(label="Number of Top Organizations", choices=TOP_K_CHOICES, value=25)
|
|
|
179 |
if 'data_download_timestamp' in current_df.columns and pd.notna(current_df['data_download_timestamp'].iloc[0]):
|
180 |
ts = pd.to_datetime(current_df['data_download_timestamp'].iloc[0], utc=True)
|
181 |
date_display = ts.strftime('%B %d, %Y, %H:%M:%S %Z')
|
182 |
+
# Count models where params is not -1 (known size)
|
183 |
+
param_count = (current_df['params'] != -1).sum() if 'params' in current_df.columns else 0
|
184 |
+
unknown_param_count = (current_df['params'] == -1).sum() if 'params' in current_df.columns else 0
|
185 |
+
|
186 |
+
data_info_text = f"### Data Information\n- Source: `{HF_DATASET_ID}`\n- Status: {status_msg_from_load}\n- Total models loaded: {len(current_df):,}\n- Models with known parameter counts: {param_count:,}\n- Models with unknown parameter counts: {unknown_param_count:,}\n- Data as of: {date_display}\n"
|
187 |
else:
|
188 |
data_info_text = f"### Data Load Failed\n- {status_msg_from_load}"
|
189 |
except Exception as e:
|
|
|
194 |
print(f"Critical error in load_and_generate_initial_plot: {e}")
|
195 |
|
196 |
# --- Part 2: Generate Initial Plot ---
|
|
|
197 |
progress(0.6, desc="Generating initial plot...")
|
198 |
# Get default values directly from the UI component definitions
|
199 |
default_metric = "downloads"
|
|
|
203 |
default_param_indices = PARAM_CHOICES_DEFAULT_INDICES
|
204 |
default_k = 25
|
205 |
default_skip_orgs = "TheBloke,MaziyarPanahi,unsloth,modularai,Gensyn,bartowski"
|
206 |
+
# New default: include unknown params initially (matches checkbox default)
|
207 |
+
default_include_unknown_params = True
|
208 |
|
209 |
# Reuse the existing controller function for plotting
|
210 |
initial_plot, initial_status = ui_generate_plot_controller(
|
211 |
default_metric, default_filter_type, default_tag, default_pipeline,
|
212 |
+
default_param_indices, default_k, default_skip_orgs, default_include_unknown_params, current_df, progress
|
213 |
)
|
214 |
|
215 |
# Return all the necessary updates for the UI
|
216 |
return current_df, load_success_flag, data_info_text, initial_status, initial_plot
|
217 |
|
218 |
def ui_generate_plot_controller(metric_choice, filter_type, tag_choice, pipeline_choice,
|
219 |
+
param_range_indices, k_orgs, skip_orgs_input, include_unknown_param_size_flag, df_current_models, progress=gr.Progress()):
|
220 |
if df_current_models is None or df_current_models.empty:
|
221 |
return create_treemap(pd.DataFrame(), metric_choice, "Error: Model Data Not Loaded"), "Model data is not loaded. Cannot generate plot."
|
222 |
|
|
|
229 |
max_label = PARAM_CHOICES[int(param_range_indices[1])]
|
230 |
param_labels_for_filtering = [min_label, max_label]
|
231 |
|
232 |
+
treemap_df = make_treemap_data(
|
233 |
+
df_current_models,
|
234 |
+
metric_choice,
|
235 |
+
k_orgs,
|
236 |
+
tag_to_use,
|
237 |
+
pipeline_to_use,
|
238 |
+
param_labels_for_filtering,
|
239 |
+
orgs_to_skip,
|
240 |
+
include_unknown_param_size_flag # Pass the new flag
|
241 |
+
)
|
242 |
|
243 |
progress(0.7, desc="Generating plot...")
|
244 |
title_labels = {"downloads": "Downloads (last 30 days)", "downloadsAllTime": "Downloads (All Time)", "likes": "Likes"}
|
|
|
263 |
generate_plot_button.click(
|
264 |
fn=ui_generate_plot_controller,
|
265 |
inputs=[count_by_dropdown, filter_choice_radio, tag_filter_dropdown, pipeline_filter_dropdown,
|
266 |
+
param_range_slider, top_k_dropdown, skip_orgs_textbox, include_unknown_params_checkbox, models_data_state], # Add checkbox to inputs
|
267 |
outputs=[plot_output, status_message_md]
|
268 |
)
|
269 |
|