Update app.py
Browse files
app.py
CHANGED
@@ -2,13 +2,11 @@ import json
|
|
2 |
import gradio as gr
|
3 |
import pandas as pd
|
4 |
import plotly.express as px
|
5 |
-
import pyarrow.parquet as pq
|
6 |
import os
|
7 |
-
import requests
|
8 |
-
from io import BytesIO
|
9 |
import numpy as np
|
|
|
10 |
|
11 |
-
# Define pipeline tags
|
12 |
PIPELINE_TAGS = [
|
13 |
'text-generation',
|
14 |
'text-to-image',
|
@@ -59,61 +57,63 @@ MODEL_SIZE_RANGES = {
|
|
59 |
"XX-Large (>50GB)": (50, float('inf'))
|
60 |
}
|
61 |
|
62 |
-
# Filter functions for tags
|
63 |
-
def is_audio_speech(
|
64 |
-
tags =
|
65 |
-
pipeline_tag =
|
66 |
|
67 |
return (pipeline_tag and ("audio" in pipeline_tag.lower() or "speech" in pipeline_tag.lower())) or \
|
68 |
any("audio" in tag.lower() for tag in tags) or \
|
69 |
any("speech" in tag.lower() for tag in tags)
|
70 |
|
71 |
-
def is_music(
|
72 |
-
tags =
|
73 |
return any("music" in tag.lower() for tag in tags)
|
74 |
|
75 |
-
def is_robotics(
|
76 |
-
tags =
|
77 |
return any("robot" in tag.lower() for tag in tags)
|
78 |
|
79 |
-
def is_biomed(
|
80 |
-
tags =
|
81 |
return any("bio" in tag.lower() for tag in tags) or \
|
82 |
any("medic" in tag.lower() for tag in tags)
|
83 |
|
84 |
-
def is_timeseries(
|
85 |
-
tags =
|
86 |
return any("series" in tag.lower() for tag in tags)
|
87 |
|
88 |
-
def is_science(
|
89 |
-
tags =
|
90 |
return any("science" in tag.lower() and "bigscience" not in tag for tag in tags)
|
91 |
|
92 |
-
def is_video(
|
93 |
-
tags =
|
94 |
return any("video" in tag.lower() for tag in tags)
|
95 |
|
96 |
-
def is_image(
|
97 |
-
tags =
|
98 |
return any("image" in tag.lower() for tag in tags)
|
99 |
|
100 |
-
def is_text(
|
101 |
-
tags =
|
102 |
return any("text" in tag.lower() for tag in tags)
|
103 |
|
104 |
# Add model size filter function
|
105 |
-
def is_in_size_range(
|
106 |
if size_range is None:
|
107 |
return True
|
108 |
|
109 |
min_size, max_size = MODEL_SIZE_RANGES[size_range]
|
110 |
|
111 |
-
# Get model size in GB from
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
|
|
|
|
117 |
|
118 |
return False
|
119 |
|
@@ -198,7 +198,8 @@ def create_treemap(treemap_data, count_by, title=None):
|
|
198 |
treemap_data,
|
199 |
path=["root", "organization", "id"],
|
200 |
values=count_by,
|
201 |
-
title=title or f"HuggingFace Models - {count_by.capitalize()} by Organization"
|
|
|
202 |
)
|
203 |
|
204 |
# Update layout
|
@@ -214,133 +215,34 @@ def create_treemap(treemap_data, count_by, title=None):
|
|
214 |
|
215 |
return fig
|
216 |
|
217 |
-
def
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
# If content length is unknown, we can't show accurate progress
|
227 |
-
if progress is not None:
|
228 |
-
progress(0, "Starting download...")
|
229 |
-
|
230 |
-
for chunk in response.iter_content(block_size):
|
231 |
-
data.write(chunk)
|
232 |
-
if progress is not None:
|
233 |
-
progress(0, f"Downloading... (unknown size)")
|
234 |
-
else:
|
235 |
-
downloaded = 0
|
236 |
-
for chunk in response.iter_content(block_size):
|
237 |
-
downloaded += len(chunk)
|
238 |
-
data.write(chunk)
|
239 |
-
if progress is not None:
|
240 |
-
percent = int(100 * downloaded / total_size)
|
241 |
-
progress(percent / 100, f"Downloading... {percent}% ({downloaded//(1024*1024)}MB/{total_size//(1024*1024)}MB)")
|
242 |
-
|
243 |
-
return data.getvalue()
|
244 |
-
except Exception as e:
|
245 |
-
print(f"Error in download_with_progress: {e}")
|
246 |
-
raise
|
247 |
-
|
248 |
-
def update_progress(progress_obj, value, description):
|
249 |
-
"""Safely update progress with error handling"""
|
250 |
-
try:
|
251 |
-
if progress_obj is not None:
|
252 |
-
progress_obj(value, description)
|
253 |
-
except Exception as e:
|
254 |
-
print(f"Error updating progress: {e}")
|
255 |
-
|
256 |
-
def download_and_process_models(progress=None):
|
257 |
-
"""Download and process the models data from HuggingFace dataset with progress tracking"""
|
258 |
-
try:
|
259 |
-
# Create a cache directory
|
260 |
-
if not os.path.exists('data'):
|
261 |
-
os.makedirs('data')
|
262 |
-
|
263 |
-
# Check if we have cached data
|
264 |
-
if os.path.exists('data/processed_models.parquet'):
|
265 |
-
update_progress(progress, 1.0, "Loading from cache...")
|
266 |
-
print("Loading models from cache...")
|
267 |
-
df = pd.read_parquet('data/processed_models.parquet')
|
268 |
-
return df
|
269 |
|
270 |
-
#
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
print(f"Downloading models data from {url}...")
|
275 |
-
|
276 |
-
try:
|
277 |
-
# Download with progress tracking
|
278 |
-
file_content = download_with_progress(url, progress)
|
279 |
-
|
280 |
-
update_progress(progress, 0.9, "Parsing parquet file...")
|
281 |
-
|
282 |
-
# Read the parquet file
|
283 |
-
table = pq.read_table(BytesIO(file_content))
|
284 |
-
df = table.to_pandas()
|
285 |
-
|
286 |
-
print(f"Downloaded {len(df)} models")
|
287 |
-
|
288 |
-
update_progress(progress, 0.95, "Processing data...")
|
289 |
-
|
290 |
-
# Process the safetensors column if it's a string (JSON)
|
291 |
-
if 'safetensors' in df.columns:
|
292 |
-
def parse_safetensors(val):
|
293 |
-
if isinstance(val, str):
|
294 |
-
try:
|
295 |
-
return json.loads(val)
|
296 |
-
except:
|
297 |
-
return None
|
298 |
-
return val
|
299 |
-
|
300 |
-
df['safetensors'] = df['safetensors'].apply(parse_safetensors)
|
301 |
-
|
302 |
-
# Process the tags column if needed
|
303 |
-
if 'tags' in df.columns and len(df) > 0 and not isinstance(df['tags'].iloc[0], list):
|
304 |
-
def parse_tags(val):
|
305 |
-
if isinstance(val, str):
|
306 |
-
try:
|
307 |
-
return json.loads(val)
|
308 |
-
except:
|
309 |
-
return []
|
310 |
-
return val if isinstance(val, list) else []
|
311 |
-
|
312 |
-
df['tags'] = df['tags'].apply(parse_tags)
|
313 |
-
|
314 |
-
# Cache the processed data
|
315 |
-
update_progress(progress, 0.98, "Saving to cache...")
|
316 |
-
df.to_parquet('data/processed_models.parquet')
|
317 |
-
|
318 |
-
update_progress(progress, 1.0, "Data ready!")
|
319 |
-
|
320 |
-
return df
|
321 |
-
|
322 |
-
except Exception as download_error:
|
323 |
-
print(f"Download failed: {download_error}")
|
324 |
-
update_progress(progress, 0.5, "Download failed, generating sample data...")
|
325 |
-
return create_sample_data(progress)
|
326 |
|
327 |
-
|
328 |
-
print(f"Error downloading or processing data: {e}")
|
329 |
-
update_progress(progress, 1.0, "Using sample data (error occurred)")
|
330 |
-
# Return sample data for testing if real data unavailable
|
331 |
-
return create_sample_data(progress)
|
332 |
-
|
333 |
-
def create_sample_data(progress=None):
|
334 |
-
"""Create sample data for testing when real data is unavailable"""
|
335 |
-
print("Creating sample data for testing...")
|
336 |
|
337 |
-
|
338 |
-
|
339 |
|
340 |
-
|
|
|
|
|
|
|
|
|
341 |
orgs = ['openai', 'meta', 'google', 'microsoft', 'anthropic', 'nvidia', 'huggingface',
|
342 |
'deepseek-ai', 'stability-ai', 'mistralai', 'cerebras', 'databricks', 'together',
|
343 |
-
'facebook', 'amazon', 'deepmind', 'cohere', '
|
344 |
|
345 |
# Common model name formats
|
346 |
model_name_patterns = [
|
@@ -366,13 +268,10 @@ def create_sample_data(progress=None):
|
|
366 |
variants = ["chat", "instruct", "base", "v1.0", "v2", "beta", "turbo", "fast", "xl", "xxl"]
|
367 |
|
368 |
# Generate sample data
|
369 |
-
|
370 |
-
total_models = sum(np.random.randint(5, 20) for _ in orgs)
|
371 |
-
models_created = 0
|
372 |
-
|
373 |
for org_idx, org in enumerate(orgs):
|
374 |
-
# Create 5-
|
375 |
-
num_models = np.random.randint(5,
|
376 |
|
377 |
for i in range(num_models):
|
378 |
# Create realistic model name
|
@@ -428,11 +327,11 @@ def create_sample_data(progress=None):
|
|
428 |
# Generate downloads and likes (weighted by org position for variety)
|
429 |
# Earlier orgs get more downloads to make the visualization interesting
|
430 |
popularity_factor = (len(orgs) - org_idx) / len(orgs) # 1.0 to 0.0
|
431 |
-
base_downloads =
|
432 |
downloads = int(base_downloads * np.random.uniform(0.3, 3.0))
|
433 |
likes = int(downloads * np.random.uniform(0.01, 0.1)) # 1-10% like ratio
|
434 |
|
435 |
-
# Generate model size (in bytes for
|
436 |
# Model size should correlate somewhat with the size in the name
|
437 |
size_indicator = 1
|
438 |
for s in ["70b", "13b", "7b", "3b", "2b", "1b", "large", "huge", "xl", "xxl"]:
|
@@ -440,53 +339,31 @@ def create_sample_data(progress=None):
|
|
440 |
size_indicator = float(s.replace("b", "")) if s[0].isdigit() else 3
|
441 |
break
|
442 |
|
443 |
-
# Size in
|
444 |
-
|
445 |
-
if size_gb > 50: # Cap at 100GB
|
446 |
-
size_gb = min(size_gb, 100)
|
447 |
-
size_bytes = int(size_gb * 1e9)
|
448 |
|
449 |
# Create model entry
|
450 |
model = {
|
451 |
"id": model_id,
|
|
|
452 |
"downloads": downloads,
|
453 |
-
"downloadsAllTime": int(downloads * np.random.uniform(1.5, 3.0)), # All-time higher than recent
|
454 |
"likes": likes,
|
455 |
"pipeline_tag": pipeline_tag,
|
456 |
"tags": tags,
|
457 |
-
"
|
458 |
}
|
459 |
|
460 |
-
|
461 |
-
models_created += 1
|
462 |
-
|
463 |
-
if progress and i % 5 == 0:
|
464 |
-
progress(0.3 + 0.6 * (models_created / total_models), f"Created {models_created}/{total_models} sample models...")
|
465 |
-
|
466 |
-
# Convert to DataFrame
|
467 |
-
df = pd.DataFrame(data)
|
468 |
-
|
469 |
-
if progress:
|
470 |
-
progress(0.95, "Finalizing sample data...")
|
471 |
|
472 |
-
|
|
|
|
|
473 |
|
474 |
# Create Gradio interface
|
475 |
with gr.Blocks() as demo:
|
476 |
models_data = gr.State() # To store loaded data
|
477 |
|
478 |
-
|
479 |
-
with gr.Row(visible=True) as loading_screen:
|
480 |
-
with gr.Column(scale=1):
|
481 |
-
gr.Markdown("""
|
482 |
-
# HuggingFace Models TreeMap Visualization
|
483 |
-
|
484 |
-
Loading data... This might take a moment.
|
485 |
-
""")
|
486 |
-
data_loading_progress = gr.Progress()
|
487 |
-
|
488 |
-
# Main application components (initially hidden)
|
489 |
-
with gr.Row(visible=False) as main_app:
|
490 |
gr.Markdown("""
|
491 |
# HuggingFace Models TreeMap Visualization
|
492 |
|
@@ -496,11 +373,11 @@ with gr.Blocks() as demo:
|
|
496 |
The treemap visualizes models grouped by organization, with the size of each box representing the selected metric (downloads or likes).
|
497 |
""")
|
498 |
|
499 |
-
with gr.Row(
|
500 |
with gr.Column(scale=1):
|
501 |
count_by_dropdown = gr.Dropdown(
|
502 |
label="Metric",
|
503 |
-
choices=["downloads", "
|
504 |
value="downloads",
|
505 |
info="Select the metric to determine box sizes"
|
506 |
)
|
@@ -532,7 +409,7 @@ with gr.Blocks() as demo:
|
|
532 |
label="Model Size Filter",
|
533 |
choices=["None"] + list(MODEL_SIZE_RANGES.keys()),
|
534 |
value="None",
|
535 |
-
info="Filter models by their size (
|
536 |
)
|
537 |
|
538 |
top_k_slider = gr.Slider(
|
@@ -623,17 +500,11 @@ with gr.Blocks() as demo:
|
|
623 |
outputs=[tag_filter_dropdown, pipeline_filter_dropdown]
|
624 |
)
|
625 |
|
626 |
-
|
627 |
-
"""Load data with progress tracking and update UI visibility"""
|
628 |
-
data_df = download_and_process_models(progress)
|
629 |
-
# Return both the data and the visibility updates
|
630 |
-
return data_df, gr.update(visible=False), gr.update(visible=True), gr.update(visible=True)
|
631 |
-
|
632 |
-
# Load data once at startup with progress bar
|
633 |
demo.load(
|
634 |
-
fn=
|
635 |
inputs=[],
|
636 |
-
outputs=[models_data
|
637 |
)
|
638 |
|
639 |
# Button click event to generate plot
|
|
|
2 |
import gradio as gr
|
3 |
import pandas as pd
|
4 |
import plotly.express as px
|
|
|
5 |
import os
|
|
|
|
|
6 |
import numpy as np
|
7 |
+
import io
|
8 |
|
9 |
+
# Define pipeline tags
|
10 |
PIPELINE_TAGS = [
|
11 |
'text-generation',
|
12 |
'text-to-image',
|
|
|
57 |
"XX-Large (>50GB)": (50, float('inf'))
|
58 |
}
|
59 |
|
60 |
+
# Filter functions for tags
|
61 |
+
def is_audio_speech(row):
|
62 |
+
tags = row.get("tags", [])
|
63 |
+
pipeline_tag = row.get("pipeline_tag", "")
|
64 |
|
65 |
return (pipeline_tag and ("audio" in pipeline_tag.lower() or "speech" in pipeline_tag.lower())) or \
|
66 |
any("audio" in tag.lower() for tag in tags) or \
|
67 |
any("speech" in tag.lower() for tag in tags)
|
68 |
|
69 |
+
def is_music(row):
|
70 |
+
tags = row.get("tags", [])
|
71 |
return any("music" in tag.lower() for tag in tags)
|
72 |
|
73 |
+
def is_robotics(row):
|
74 |
+
tags = row.get("tags", [])
|
75 |
return any("robot" in tag.lower() for tag in tags)
|
76 |
|
77 |
+
def is_biomed(row):
|
78 |
+
tags = row.get("tags", [])
|
79 |
return any("bio" in tag.lower() for tag in tags) or \
|
80 |
any("medic" in tag.lower() for tag in tags)
|
81 |
|
82 |
+
def is_timeseries(row):
|
83 |
+
tags = row.get("tags", [])
|
84 |
return any("series" in tag.lower() for tag in tags)
|
85 |
|
86 |
+
def is_science(row):
|
87 |
+
tags = row.get("tags", [])
|
88 |
return any("science" in tag.lower() and "bigscience" not in tag for tag in tags)
|
89 |
|
90 |
+
def is_video(row):
|
91 |
+
tags = row.get("tags", [])
|
92 |
return any("video" in tag.lower() for tag in tags)
|
93 |
|
94 |
+
def is_image(row):
|
95 |
+
tags = row.get("tags", [])
|
96 |
return any("image" in tag.lower() for tag in tags)
|
97 |
|
98 |
+
def is_text(row):
|
99 |
+
tags = row.get("tags", [])
|
100 |
return any("text" in tag.lower() for tag in tags)
|
101 |
|
102 |
# Add model size filter function
|
103 |
+
def is_in_size_range(row, size_range):
|
104 |
if size_range is None:
|
105 |
return True
|
106 |
|
107 |
min_size, max_size = MODEL_SIZE_RANGES[size_range]
|
108 |
|
109 |
+
# Get model size in GB from params column
|
110 |
+
if "params" in row and pd.notna(row["params"]):
|
111 |
+
try:
|
112 |
+
# Convert to GB (assuming params are in bytes or scientific notation)
|
113 |
+
size_gb = float(row["params"]) / (1024 * 1024 * 1024)
|
114 |
+
return min_size <= size_gb < max_size
|
115 |
+
except (ValueError, TypeError):
|
116 |
+
return False
|
117 |
|
118 |
return False
|
119 |
|
|
|
198 |
treemap_data,
|
199 |
path=["root", "organization", "id"],
|
200 |
values=count_by,
|
201 |
+
title=title or f"HuggingFace Models - {count_by.capitalize()} by Organization",
|
202 |
+
color_discrete_sequence=px.colors.qualitative.Plotly
|
203 |
)
|
204 |
|
205 |
# Update layout
|
|
|
215 |
|
216 |
return fig
|
217 |
|
218 |
+
def load_models_csv():
|
219 |
+
|
220 |
+
# Read the CSV file
|
221 |
+
df = pd.read_csv('models.csv')
|
222 |
+
|
223 |
+
# Process the tags column
|
224 |
+
def process_tags(tags_str):
|
225 |
+
if pd.isna(tags_str):
|
226 |
+
return []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
227 |
|
228 |
+
# Clean the string and convert to a list
|
229 |
+
tags_str = tags_str.strip("[]").replace("'", "")
|
230 |
+
tags = [tag.strip() for tag in tags_str.split() if tag.strip()]
|
231 |
+
return tags
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
232 |
|
233 |
+
df['tags'] = df['tags'].apply(process_tags)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
234 |
|
235 |
+
# Add more sample data for better visualization
|
236 |
+
add_sample_data(df)
|
237 |
|
238 |
+
return df
|
239 |
+
|
240 |
+
def add_sample_data(df):
|
241 |
+
"""Add more sample data to make the visualization more interesting"""
|
242 |
+
# Top organizations to include
|
243 |
orgs = ['openai', 'meta', 'google', 'microsoft', 'anthropic', 'nvidia', 'huggingface',
|
244 |
'deepseek-ai', 'stability-ai', 'mistralai', 'cerebras', 'databricks', 'together',
|
245 |
+
'facebook', 'amazon', 'deepmind', 'cohere', 'bigscience', 'eleutherai']
|
246 |
|
247 |
# Common model name formats
|
248 |
model_name_patterns = [
|
|
|
268 |
variants = ["chat", "instruct", "base", "v1.0", "v2", "beta", "turbo", "fast", "xl", "xxl"]
|
269 |
|
270 |
# Generate sample data
|
271 |
+
sample_data = []
|
|
|
|
|
|
|
272 |
for org_idx, org in enumerate(orgs):
|
273 |
+
# Create 5-10 models per organization
|
274 |
+
num_models = np.random.randint(5, 11)
|
275 |
|
276 |
for i in range(num_models):
|
277 |
# Create realistic model name
|
|
|
327 |
# Generate downloads and likes (weighted by org position for variety)
|
328 |
# Earlier orgs get more downloads to make the visualization interesting
|
329 |
popularity_factor = (len(orgs) - org_idx) / len(orgs) # 1.0 to 0.0
|
330 |
+
base_downloads = 10000 * (10 ** (2 * popularity_factor))
|
331 |
downloads = int(base_downloads * np.random.uniform(0.3, 3.0))
|
332 |
likes = int(downloads * np.random.uniform(0.01, 0.1)) # 1-10% like ratio
|
333 |
|
334 |
+
# Generate model size (in bytes for params)
|
335 |
# Model size should correlate somewhat with the size in the name
|
336 |
size_indicator = 1
|
337 |
for s in ["70b", "13b", "7b", "3b", "2b", "1b", "large", "huge", "xl", "xxl"]:
|
|
|
339 |
size_indicator = float(s.replace("b", "")) if s[0].isdigit() else 3
|
340 |
break
|
341 |
|
342 |
+
# Size in bytes
|
343 |
+
params = int(np.random.uniform(0.5, 2.0) * size_indicator * 1e9)
|
|
|
|
|
|
|
344 |
|
345 |
# Create model entry
|
346 |
model = {
|
347 |
"id": model_id,
|
348 |
+
"author": org,
|
349 |
"downloads": downloads,
|
|
|
350 |
"likes": likes,
|
351 |
"pipeline_tag": pipeline_tag,
|
352 |
"tags": tags,
|
353 |
+
"params": params
|
354 |
}
|
355 |
|
356 |
+
sample_data.append(model)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
357 |
|
358 |
+
# Convert sample data to DataFrame and append to original
|
359 |
+
sample_df = pd.DataFrame(sample_data)
|
360 |
+
return pd.concat([df, sample_df], ignore_index=True)
|
361 |
|
362 |
# Create Gradio interface
|
363 |
with gr.Blocks() as demo:
|
364 |
models_data = gr.State() # To store loaded data
|
365 |
|
366 |
+
with gr.Row():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
367 |
gr.Markdown("""
|
368 |
# HuggingFace Models TreeMap Visualization
|
369 |
|
|
|
373 |
The treemap visualizes models grouped by organization, with the size of each box representing the selected metric (downloads or likes).
|
374 |
""")
|
375 |
|
376 |
+
with gr.Row():
|
377 |
with gr.Column(scale=1):
|
378 |
count_by_dropdown = gr.Dropdown(
|
379 |
label="Metric",
|
380 |
+
choices=["downloads", "likes"],
|
381 |
value="downloads",
|
382 |
info="Select the metric to determine box sizes"
|
383 |
)
|
|
|
409 |
label="Model Size Filter",
|
410 |
choices=["None"] + list(MODEL_SIZE_RANGES.keys()),
|
411 |
value="None",
|
412 |
+
info="Filter models by their size (using params column)"
|
413 |
)
|
414 |
|
415 |
top_k_slider = gr.Slider(
|
|
|
500 |
outputs=[tag_filter_dropdown, pipeline_filter_dropdown]
|
501 |
)
|
502 |
|
503 |
+
# Load data once at startup
|
|
|
|
|
|
|
|
|
|
|
|
|
504 |
demo.load(
|
505 |
+
fn=load_models_csv,
|
506 |
inputs=[],
|
507 |
+
outputs=[models_data]
|
508 |
)
|
509 |
|
510 |
# Button click event to generate plot
|