Update app.py
Browse files
app.py
CHANGED
@@ -2,7 +2,13 @@ import json
|
|
2 |
import gradio as gr
|
3 |
import pandas as pd
|
4 |
import plotly.express as px
|
|
|
|
|
|
|
|
|
|
|
5 |
|
|
|
6 |
PIPELINE_TAGS = [
|
7 |
'text-generation',
|
8 |
'text-to-image',
|
@@ -44,6 +50,16 @@ PIPELINE_TAGS = [
|
|
44 |
'table-question-answering',
|
45 |
]
|
46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
def is_audio_speech(repo_dct):
|
48 |
res = (repo_dct.get("pipeline_tag", None) and "audio" in repo_dct.get("pipeline_tag", "").lower()) or \
|
49 |
(repo_dct.get("pipeline_tag", None) and "speech" in repo_dct.get("pipeline_tag", "").lower()) or \
|
@@ -84,6 +100,21 @@ def is_text(repo_dct):
|
|
84 |
res = (repo_dct.get("tags", None) and any("text" in tag.lower() for tag in repo_dct.get("tags", [])))
|
85 |
return res
|
86 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
TAG_FILTER_FUNCS = {
|
88 |
"Audio & Speech": is_audio_speech,
|
89 |
"Time series": is_timeseries,
|
@@ -96,79 +127,211 @@ TAG_FILTER_FUNCS = {
|
|
96 |
"Sciences": is_science,
|
97 |
}
|
98 |
|
99 |
-
def make_org_stats(
|
100 |
-
assert count_by in ["likes", "downloads"
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
|
|
|
|
|
|
|
|
105 |
sorted_stats = sorted(
|
106 |
[(
|
107 |
-
|
108 |
-
sum(
|
109 |
-
) for
|
110 |
-
key=lambda x:x[1],
|
111 |
reverse=True,
|
112 |
)
|
|
|
|
|
113 |
res = sorted_stats[:top_k] + [("Others...", sum(st for auth, st in sorted_stats[top_k:]))]
|
114 |
total_st = sum(st for o, st in res)
|
|
|
|
|
115 |
res_plot_df = []
|
116 |
for org, st in res:
|
117 |
if org == "Others...":
|
118 |
-
res_plot_df += [("Others...", "other", st * 100 / total_st)]
|
119 |
else:
|
120 |
-
for
|
121 |
-
|
122 |
-
if
|
123 |
-
|
124 |
-
return ([(o, 100 * st / total_st) for o, st in res if st > 0], res_plot_df)
|
125 |
|
126 |
-
def make_figure(count_by,
|
127 |
-
assert count_by in ["downloads", "likes"
|
128 |
-
|
129 |
-
|
130 |
filter_func = None
|
131 |
if tag_filter:
|
132 |
filter_func = TAG_FILTER_FUNCS[tag_filter]
|
133 |
-
|
134 |
filter_func = lambda dct: dct.get("pipeline_tag", None) and dct.get("pipeline_tag", "") == pipeline_filter
|
135 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
df = pd.DataFrame(
|
137 |
dict(
|
138 |
organizations=[o for o, _, _ in res_plot_df],
|
139 |
-
|
140 |
stats=[s for _, _, s in res_plot_df],
|
141 |
)
|
142 |
)
|
143 |
-
|
144 |
-
|
|
|
|
|
|
|
|
|
|
|
145 |
fig.update_layout(
|
146 |
-
|
147 |
-
margin = dict(t=50, l=25, r=25, b=25)
|
148 |
)
|
|
|
149 |
return fig
|
150 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
with gr.Blocks() as demo:
|
153 |
-
|
154 |
|
155 |
with gr.Row():
|
156 |
gr.Markdown("""
|
157 |
-
##
|
158 |
|
159 |
-
This app shows how different organizations
|
160 |
-
Use the
|
161 |
""")
|
|
|
162 |
with gr.Row():
|
163 |
with gr.Column(scale=1):
|
164 |
-
repo_type_dropdown = gr.Dropdown(
|
165 |
-
label="Repository Type",
|
166 |
-
choices=["all", "models", "datasets"],
|
167 |
-
value="all"
|
168 |
-
)
|
169 |
count_by_dropdown = gr.Dropdown(
|
170 |
label="Metric",
|
171 |
-
choices=["downloads", "likes"
|
172 |
value="downloads"
|
173 |
)
|
174 |
|
@@ -184,47 +347,50 @@ with gr.Blocks() as demo:
|
|
184 |
value=None,
|
185 |
visible=False
|
186 |
)
|
|
|
187 |
pipeline_filter_dropdown = gr.Dropdown(
|
188 |
label="Select Pipeline Tag",
|
189 |
choices=PIPELINE_TAGS,
|
190 |
value=None,
|
191 |
visible=False
|
192 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
|
194 |
generate_plot_button = gr.Button("Generate Plot")
|
195 |
|
196 |
with gr.Column(scale=3):
|
197 |
plot_output = gr.Plot()
|
198 |
|
199 |
-
def generate_plot_on_click(
|
200 |
-
|
201 |
-
|
202 |
-
print(f" Repository Type: {repo_type}")
|
203 |
-
print(f" Metric (Count By): {count_by}")
|
204 |
-
print(f" Filter Choice: {filter_choice}")
|
205 |
-
if filter_choice == "Tag Filter":
|
206 |
-
print(f" Tag Filter: {tag_filter}")
|
207 |
-
elif filter_choice == "Pipeline Filter":
|
208 |
-
print(f" Pipeline Filter: {pipeline_filter}")
|
209 |
-
|
210 |
if data is None:
|
211 |
print("Error: Data not loaded yet.")
|
212 |
return None
|
213 |
|
214 |
selected_tag_filter = None
|
215 |
selected_pipeline_filter = None
|
|
|
216 |
|
217 |
if filter_choice == "Tag Filter":
|
218 |
selected_tag_filter = tag_filter
|
219 |
elif filter_choice == "Pipeline Filter":
|
220 |
selected_pipeline_filter = pipeline_filter
|
|
|
|
|
|
|
221 |
|
222 |
fig = make_figure(
|
223 |
count_by=count_by,
|
224 |
-
repo_type=repo_type,
|
225 |
org_stats=data,
|
226 |
tag_filter=selected_tag_filter,
|
227 |
-
pipeline_filter=selected_pipeline_filter
|
|
|
228 |
)
|
229 |
return fig
|
230 |
|
@@ -233,7 +399,7 @@ with gr.Blocks() as demo:
|
|
233 |
return gr.update(visible=True), gr.update(visible=False)
|
234 |
elif filter_choice == "Pipeline Filter":
|
235 |
return gr.update(visible=False), gr.update(visible=True)
|
236 |
-
else:
|
237 |
return gr.update(visible=False), gr.update(visible=False)
|
238 |
|
239 |
filter_choice_radio.change(
|
@@ -243,33 +409,26 @@ with gr.Blocks() as demo:
|
|
243 |
)
|
244 |
|
245 |
# Load data once at startup
|
246 |
-
def load_org_data():
|
247 |
-
print("Loading organization statistics data...")
|
248 |
-
loaded_org_stats = json.load(open("org_to_artifacts_2l_stats.json"))
|
249 |
-
print("Data loaded successfully.")
|
250 |
-
return loaded_org_stats
|
251 |
-
|
252 |
demo.load(
|
253 |
-
fn=
|
254 |
-
inputs=[],
|
255 |
-
outputs=[
|
256 |
)
|
257 |
|
258 |
# Button click event to generate plot
|
259 |
generate_plot_button.click(
|
260 |
fn=generate_plot_on_click,
|
261 |
inputs=[
|
262 |
-
repo_type_dropdown,
|
263 |
count_by_dropdown,
|
264 |
filter_choice_radio,
|
265 |
tag_filter_dropdown,
|
266 |
pipeline_filter_dropdown,
|
267 |
-
|
|
|
268 |
],
|
269 |
outputs=[plot_output]
|
270 |
)
|
271 |
|
272 |
|
273 |
if __name__ == "__main__":
|
274 |
-
# org_stats = json.load(open("org_to_artifacts_2l_stats.json")) # Data loading handled by demo.load
|
275 |
demo.launch()
|
|
|
2 |
import gradio as gr
|
3 |
import pandas as pd
|
4 |
import plotly.express as px
|
5 |
+
import pyarrow.parquet as pq
|
6 |
+
import os
|
7 |
+
import requests
|
8 |
+
from io import BytesIO
|
9 |
+
import math
|
10 |
|
11 |
+
# Define pipeline tags (keeping the same ones from the provided code)
|
12 |
PIPELINE_TAGS = [
|
13 |
'text-generation',
|
14 |
'text-to-image',
|
|
|
50 |
'table-question-answering',
|
51 |
]
|
52 |
|
53 |
+
# Model size categories in GB
|
54 |
+
MODEL_SIZE_RANGES = {
|
55 |
+
"Small (<1GB)": (0, 1),
|
56 |
+
"Medium (1-5GB)": (1, 5),
|
57 |
+
"Large (5-20GB)": (5, 20),
|
58 |
+
"X-Large (20-50GB)": (20, 50),
|
59 |
+
"XX-Large (>50GB)": (50, float('inf'))
|
60 |
+
}
|
61 |
+
|
62 |
+
# Filter functions for tags - keeping the same from provided code
|
63 |
def is_audio_speech(repo_dct):
|
64 |
res = (repo_dct.get("pipeline_tag", None) and "audio" in repo_dct.get("pipeline_tag", "").lower()) or \
|
65 |
(repo_dct.get("pipeline_tag", None) and "speech" in repo_dct.get("pipeline_tag", "").lower()) or \
|
|
|
100 |
res = (repo_dct.get("tags", None) and any("text" in tag.lower() for tag in repo_dct.get("tags", [])))
|
101 |
return res
|
102 |
|
103 |
+
# Add model size filter function
|
104 |
+
def is_in_size_range(repo_dct, size_range):
|
105 |
+
if size_range is None:
|
106 |
+
return True
|
107 |
+
|
108 |
+
min_size, max_size = MODEL_SIZE_RANGES[size_range]
|
109 |
+
|
110 |
+
# Get model size in GB from safetensors total (if available)
|
111 |
+
if repo_dct.get("safetensors") and repo_dct["safetensors"].get("total"):
|
112 |
+
# Convert bytes to GB
|
113 |
+
size_gb = repo_dct["safetensors"]["total"] / (1024 * 1024 * 1024)
|
114 |
+
return min_size <= size_gb < max_size
|
115 |
+
|
116 |
+
return False
|
117 |
+
|
118 |
TAG_FILTER_FUNCS = {
|
119 |
"Audio & Speech": is_audio_speech,
|
120 |
"Time series": is_timeseries,
|
|
|
127 |
"Sciences": is_science,
|
128 |
}
|
129 |
|
130 |
+
def make_org_stats(count_by, org_stats, top_k=20, filter_func=None, size_range=None):
|
131 |
+
assert count_by in ["likes", "downloads"]
|
132 |
+
|
133 |
+
# Apply both filter_func and size_range if provided
|
134 |
+
def combined_filter(dct):
|
135 |
+
passes_tag_filter = filter_func(dct) if filter_func else True
|
136 |
+
passes_size_filter = is_in_size_range(dct, size_range) if size_range else True
|
137 |
+
return passes_tag_filter and passes_size_filter
|
138 |
+
|
139 |
+
# Sort organizations by total count
|
140 |
sorted_stats = sorted(
|
141 |
[(
|
142 |
+
org_id,
|
143 |
+
sum(model[count_by] for model in models if combined_filter(model))
|
144 |
+
) for org_id, models in org_stats.items()],
|
145 |
+
key=lambda x: x[1],
|
146 |
reverse=True,
|
147 |
)
|
148 |
+
|
149 |
+
# Top organizations + Others category
|
150 |
res = sorted_stats[:top_k] + [("Others...", sum(st for auth, st in sorted_stats[top_k:]))]
|
151 |
total_st = sum(st for o, st in res)
|
152 |
+
|
153 |
+
# Prepare data for treemap
|
154 |
res_plot_df = []
|
155 |
for org, st in res:
|
156 |
if org == "Others...":
|
157 |
+
res_plot_df += [("Others...", "other", st * 100 / total_st if total_st > 0 else 0)]
|
158 |
else:
|
159 |
+
for model in org_stats[org]:
|
160 |
+
if combined_filter(model):
|
161 |
+
res_plot_df += [(org, model["id"], model[count_by] * 100 / total_st if total_st > 0 else 0)]
|
162 |
+
|
163 |
+
return ([(o, 100 * st / total_st if total_st > 0 else 0) for o, st in res if st > 0], res_plot_df)
|
164 |
|
165 |
+
def make_figure(count_by, org_stats, tag_filter=None, pipeline_filter=None, size_range=None):
|
166 |
+
assert count_by in ["downloads", "likes"]
|
167 |
+
|
168 |
+
# Determine which filter function to use
|
169 |
filter_func = None
|
170 |
if tag_filter:
|
171 |
filter_func = TAG_FILTER_FUNCS[tag_filter]
|
172 |
+
elif pipeline_filter:
|
173 |
filter_func = lambda dct: dct.get("pipeline_tag", None) and dct.get("pipeline_tag", "") == pipeline_filter
|
174 |
+
else:
|
175 |
+
filter_func = lambda dct: True
|
176 |
+
|
177 |
+
# Generate stats with filters
|
178 |
+
_, res_plot_df = make_org_stats(count_by, org_stats, top_k=25, filter_func=filter_func, size_range=size_range)
|
179 |
+
|
180 |
+
# Create DataFrame for Plotly
|
181 |
df = pd.DataFrame(
|
182 |
dict(
|
183 |
organizations=[o for o, _, _ in res_plot_df],
|
184 |
+
model=[r for _, r, _ in res_plot_df],
|
185 |
stats=[s for _, _, s in res_plot_df],
|
186 |
)
|
187 |
)
|
188 |
+
|
189 |
+
df["models"] = "models" # Root node
|
190 |
+
|
191 |
+
# Create treemap
|
192 |
+
fig = px.treemap(df, path=["models", 'organizations', 'model'], values='stats',
|
193 |
+
title=f"HuggingFace Models - {count_by.capitalize()} by Organization")
|
194 |
+
|
195 |
fig.update_layout(
|
196 |
+
margin=dict(t=50, l=25, r=25, b=25)
|
|
|
197 |
)
|
198 |
+
|
199 |
return fig
|
200 |
|
201 |
+
def download_and_process_models():
|
202 |
+
"""Download and process the models data from HuggingFace dataset"""
|
203 |
+
try:
|
204 |
+
# Create a cache directory
|
205 |
+
if not os.path.exists('data'):
|
206 |
+
os.makedirs('data')
|
207 |
+
|
208 |
+
# Check if we have cached data
|
209 |
+
if os.path.exists('data/processed_models.json'):
|
210 |
+
print("Loading from cache...")
|
211 |
+
with open('data/processed_models.json', 'r') as f:
|
212 |
+
return json.load(f)
|
213 |
+
|
214 |
+
# URL to the models.parquet file
|
215 |
+
url = "https://huggingface.co/datasets/cfahlgren1/hub-stats/resolve/main/models.parquet"
|
216 |
+
|
217 |
+
print(f"Downloading models data from {url}...")
|
218 |
+
response = requests.get(url)
|
219 |
+
if response.status_code != 200:
|
220 |
+
raise Exception(f"Failed to download data: HTTP {response.status_code}")
|
221 |
+
|
222 |
+
# Read the parquet file
|
223 |
+
table = pq.read_table(BytesIO(response.content))
|
224 |
+
df = table.to_pandas()
|
225 |
+
|
226 |
+
print(f"Downloaded {len(df)} models")
|
227 |
+
|
228 |
+
# Process the dataframe into the organization structure we need
|
229 |
+
org_stats = {}
|
230 |
+
|
231 |
+
for _, row in df.iterrows():
|
232 |
+
model_id = row['id']
|
233 |
+
|
234 |
+
# Extract the organization part of the model ID
|
235 |
+
if '/' in model_id:
|
236 |
+
org_id = model_id.split('/')[0]
|
237 |
+
else:
|
238 |
+
org_id = "unaffiliated"
|
239 |
+
|
240 |
+
# Create model entry with needed fields
|
241 |
+
model_entry = {
|
242 |
+
"id": model_id,
|
243 |
+
"downloads": row.get('downloads', 0),
|
244 |
+
"likes": row.get('likes', 0),
|
245 |
+
"pipeline_tag": row.get('pipeline_tag'),
|
246 |
+
"tags": row.get('tags', []),
|
247 |
+
}
|
248 |
+
|
249 |
+
# Add safetensors information if available
|
250 |
+
if 'safetensors' in row and row['safetensors']:
|
251 |
+
if isinstance(row['safetensors'], dict) and 'total' in row['safetensors']:
|
252 |
+
model_entry["safetensors"] = {"total": row['safetensors']['total']}
|
253 |
+
elif isinstance(row['safetensors'], str):
|
254 |
+
# Try to parse JSON string
|
255 |
+
try:
|
256 |
+
safetensors = json.loads(row['safetensors'])
|
257 |
+
if isinstance(safetensors, dict) and 'total' in safetensors:
|
258 |
+
model_entry["safetensors"] = {"total": safetensors['total']}
|
259 |
+
except:
|
260 |
+
pass
|
261 |
+
|
262 |
+
# Add to organization stats
|
263 |
+
if org_id not in org_stats:
|
264 |
+
org_stats[org_id] = []
|
265 |
+
|
266 |
+
org_stats[org_id].append(model_entry)
|
267 |
+
|
268 |
+
# Cache the processed data
|
269 |
+
with open('data/processed_models.json', 'w') as f:
|
270 |
+
json.dump(org_stats, f)
|
271 |
+
|
272 |
+
return org_stats
|
273 |
+
|
274 |
+
except Exception as e:
|
275 |
+
print(f"Error downloading or processing data: {e}")
|
276 |
+
# Return sample data for testing if real data unavailable
|
277 |
+
return create_sample_data()
|
278 |
|
279 |
+
def create_sample_data():
|
280 |
+
"""Create sample data for testing when real data is unavailable"""
|
281 |
+
print("Creating sample data for testing...")
|
282 |
+
|
283 |
+
sample_orgs = ['openai', 'meta', 'google', 'microsoft', 'anthropic', 'stability', 'huggingface']
|
284 |
+
org_stats = {}
|
285 |
+
|
286 |
+
for org in sample_orgs:
|
287 |
+
org_stats[org] = []
|
288 |
+
num_models = 5 # Each org has 5 sample models
|
289 |
+
|
290 |
+
for i in range(num_models):
|
291 |
+
model_id = f"{org}/model-{i+1}"
|
292 |
+
|
293 |
+
# Random pipeline tag
|
294 |
+
pipeline_idx = i % len(PIPELINE_TAGS)
|
295 |
+
pipeline_tag = PIPELINE_TAGS[pipeline_idx]
|
296 |
+
|
297 |
+
# Random tags
|
298 |
+
tags = [pipeline_tag, "sample-data"]
|
299 |
+
|
300 |
+
# Random downloads and likes
|
301 |
+
downloads = int(1000 * (10 ** (org_stats.keys().index(org) % 3))) # Different magnitudes
|
302 |
+
likes = int(downloads * 0.05) # 5% like rate
|
303 |
+
|
304 |
+
# Random model size in bytes (from 100MB to 100GB)
|
305 |
+
model_size = (10**8) * (10 ** (i % 3)) # Different magnitudes
|
306 |
+
|
307 |
+
org_stats[org].append({
|
308 |
+
"id": model_id,
|
309 |
+
"downloads": downloads,
|
310 |
+
"likes": likes,
|
311 |
+
"pipeline_tag": pipeline_tag,
|
312 |
+
"tags": tags,
|
313 |
+
"safetensors": {"total": model_size}
|
314 |
+
})
|
315 |
+
|
316 |
+
return org_stats
|
317 |
+
|
318 |
+
# Create Gradio interface
|
319 |
with gr.Blocks() as demo:
|
320 |
+
models_data = gr.State(value=None) # To store loaded data
|
321 |
|
322 |
with gr.Row():
|
323 |
gr.Markdown("""
|
324 |
+
## HuggingFace Models TreeMap
|
325 |
|
326 |
+
This app shows how different organizations contribute to the HuggingFace ecosystem with their models.
|
327 |
+
Use the filters to explore models by different metrics, tags, pipelines, and model sizes.
|
328 |
""")
|
329 |
+
|
330 |
with gr.Row():
|
331 |
with gr.Column(scale=1):
|
|
|
|
|
|
|
|
|
|
|
332 |
count_by_dropdown = gr.Dropdown(
|
333 |
label="Metric",
|
334 |
+
choices=["downloads", "likes"],
|
335 |
value="downloads"
|
336 |
)
|
337 |
|
|
|
347 |
value=None,
|
348 |
visible=False
|
349 |
)
|
350 |
+
|
351 |
pipeline_filter_dropdown = gr.Dropdown(
|
352 |
label="Select Pipeline Tag",
|
353 |
choices=PIPELINE_TAGS,
|
354 |
value=None,
|
355 |
visible=False
|
356 |
)
|
357 |
+
|
358 |
+
size_filter_dropdown = gr.Dropdown(
|
359 |
+
label="Model Size Filter",
|
360 |
+
choices=["None"] + list(MODEL_SIZE_RANGES.keys()),
|
361 |
+
value="None"
|
362 |
+
)
|
363 |
|
364 |
generate_plot_button = gr.Button("Generate Plot")
|
365 |
|
366 |
with gr.Column(scale=3):
|
367 |
plot_output = gr.Plot()
|
368 |
|
369 |
+
def generate_plot_on_click(count_by, filter_choice, tag_filter, pipeline_filter, size_filter, data):
|
370 |
+
print(f"Generating plot with: Metric={count_by}, Filter={filter_choice}, Tag={tag_filter}, Pipeline={pipeline_filter}, Size={size_filter}")
|
371 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
372 |
if data is None:
|
373 |
print("Error: Data not loaded yet.")
|
374 |
return None
|
375 |
|
376 |
selected_tag_filter = None
|
377 |
selected_pipeline_filter = None
|
378 |
+
selected_size_filter = None
|
379 |
|
380 |
if filter_choice == "Tag Filter":
|
381 |
selected_tag_filter = tag_filter
|
382 |
elif filter_choice == "Pipeline Filter":
|
383 |
selected_pipeline_filter = pipeline_filter
|
384 |
+
|
385 |
+
if size_filter != "None":
|
386 |
+
selected_size_filter = size_filter
|
387 |
|
388 |
fig = make_figure(
|
389 |
count_by=count_by,
|
|
|
390 |
org_stats=data,
|
391 |
tag_filter=selected_tag_filter,
|
392 |
+
pipeline_filter=selected_pipeline_filter,
|
393 |
+
size_range=selected_size_filter
|
394 |
)
|
395 |
return fig
|
396 |
|
|
|
399 |
return gr.update(visible=True), gr.update(visible=False)
|
400 |
elif filter_choice == "Pipeline Filter":
|
401 |
return gr.update(visible=False), gr.update(visible=True)
|
402 |
+
else: # "None"
|
403 |
return gr.update(visible=False), gr.update(visible=False)
|
404 |
|
405 |
filter_choice_radio.change(
|
|
|
409 |
)
|
410 |
|
411 |
# Load data once at startup
|
|
|
|
|
|
|
|
|
|
|
|
|
412 |
demo.load(
|
413 |
+
fn=download_and_process_models,
|
414 |
+
inputs=[],
|
415 |
+
outputs=[models_data]
|
416 |
)
|
417 |
|
418 |
# Button click event to generate plot
|
419 |
generate_plot_button.click(
|
420 |
fn=generate_plot_on_click,
|
421 |
inputs=[
|
|
|
422 |
count_by_dropdown,
|
423 |
filter_choice_radio,
|
424 |
tag_filter_dropdown,
|
425 |
pipeline_filter_dropdown,
|
426 |
+
size_filter_dropdown,
|
427 |
+
models_data
|
428 |
],
|
429 |
outputs=[plot_output]
|
430 |
)
|
431 |
|
432 |
|
433 |
if __name__ == "__main__":
|
|
|
434 |
demo.launch()
|