Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,6 +1,5 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import pandas as pd
|
| 3 |
-
import plotly.express as px
|
| 4 |
from dataclasses import dataclass, field
|
| 5 |
from typing import List, Dict, Tuple, Union
|
| 6 |
import json
|
|
@@ -8,6 +7,10 @@ import os
|
|
| 8 |
from collections import OrderedDict
|
| 9 |
import re
|
| 10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
def load_css(css_file_path):
|
| 13 |
"""Load CSS from a file."""
|
|
@@ -486,66 +489,208 @@ with gr.Column(visible=True) as leaderboard_tab:
|
|
| 486 |
datatype=["markdown", "markdown", "markdown"] + ["markdown"] * (len(category_choices)+1) # Support markdown in all columns
|
| 487 |
)
|
| 488 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 489 |
def create_category_chart(selected_systems, selected_categories):
|
| 490 |
if not selected_systems:
|
| 491 |
-
|
| 492 |
-
|
| 493 |
-
|
| 494 |
-
|
| 495 |
-
|
| 496 |
-
|
| 497 |
-
|
| 498 |
return fig
|
| 499 |
|
| 500 |
-
# Sort categories before processing
|
| 501 |
selected_categories = sort_categories(selected_categories)
|
|
|
|
| 502 |
|
| 503 |
-
data
|
|
|
|
| 504 |
for system_name in selected_systems:
|
|
|
|
| 505 |
for category in selected_categories:
|
| 506 |
if category in models[system_name]['scores']:
|
| 507 |
completed = 0
|
| 508 |
total = 0
|
|
|
|
| 509 |
|
|
|
|
| 510 |
for section in models[system_name]['scores'][category].values():
|
| 511 |
if section['status'] != 'N/A':
|
|
|
|
| 512 |
questions = section.get('questions', {})
|
| 513 |
completed += sum(1 for q in questions.values() if q)
|
| 514 |
total += len(questions)
|
| 515 |
|
| 516 |
-
if
|
| 517 |
-
|
| 518 |
-
|
| 519 |
-
|
| 520 |
-
|
| 521 |
-
|
| 522 |
-
|
| 523 |
-
|
| 524 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 525 |
|
| 526 |
if df.empty:
|
| 527 |
-
fig =
|
| 528 |
-
|
| 529 |
-
|
| 530 |
-
|
| 531 |
-
x=
|
| 532 |
-
|
| 533 |
-
color='Category',
|
| 534 |
-
title='Number of Evaluations Completed by Category',
|
| 535 |
-
labels={
|
| 536 |
-
'Evaluations Completed': 'Evaluations Completed',
|
| 537 |
-
'AI System': 'AI System Name',
|
| 538 |
-
'Category': 'Evaluation Category'
|
| 539 |
-
},
|
| 540 |
-
hover_data=['Total Evaluations']
|
| 541 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 542 |
|
| 543 |
-
|
| 544 |
-
|
| 545 |
-
|
| 546 |
-
|
| 547 |
-
|
| 548 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 549 |
|
| 550 |
return fig
|
| 551 |
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import pandas as pd
|
|
|
|
| 3 |
from dataclasses import dataclass, field
|
| 4 |
from typing import List, Dict, Tuple, Union
|
| 5 |
import json
|
|
|
|
| 7 |
from collections import OrderedDict
|
| 8 |
import re
|
| 9 |
|
| 10 |
+
import plotly.graph_objects as go
|
| 11 |
+
import plotly.express as px
|
| 12 |
+
# from plotly.subplots import make_subplots
|
| 13 |
+
# import math
|
| 14 |
|
| 15 |
def load_css(css_file_path):
|
| 16 |
"""Load CSS from a file."""
|
|
|
|
| 489 |
datatype=["markdown", "markdown", "markdown"] + ["markdown"] * (len(category_choices)+1) # Support markdown in all columns
|
| 490 |
)
|
| 491 |
|
| 492 |
+
def hex_to_rgba(hex_color, alpha):
|
| 493 |
+
"""Convert hex color to rgba string with given alpha value."""
|
| 494 |
+
hex_color = hex_color.lstrip('#')
|
| 495 |
+
r = int(hex_color[:2], 16)
|
| 496 |
+
g = int(hex_color[2:4], 16)
|
| 497 |
+
b = int(hex_color[4:], 16)
|
| 498 |
+
return f'rgba({r},{g},{b},{alpha})'
|
| 499 |
+
|
| 500 |
def create_category_chart(selected_systems, selected_categories):
|
| 501 |
if not selected_systems:
|
| 502 |
+
fig = go.Figure()
|
| 503 |
+
fig.add_annotation(
|
| 504 |
+
text="Please select at least one AI system for comparison",
|
| 505 |
+
xref="paper", yref="paper",
|
| 506 |
+
x=0.5, y=0.5,
|
| 507 |
+
showarrow=False
|
| 508 |
+
)
|
| 509 |
return fig
|
| 510 |
|
|
|
|
| 511 |
selected_categories = sort_categories(selected_categories)
|
| 512 |
+
BASE_SCORE = 5
|
| 513 |
|
| 514 |
+
# Prepare all data first
|
| 515 |
+
all_data = []
|
| 516 |
for system_name in selected_systems:
|
| 517 |
+
system_data = []
|
| 518 |
for category in selected_categories:
|
| 519 |
if category in models[system_name]['scores']:
|
| 520 |
completed = 0
|
| 521 |
total = 0
|
| 522 |
+
category_name = category.split('.')[1].strip()
|
| 523 |
|
| 524 |
+
all_na = True
|
| 525 |
for section in models[system_name]['scores'][category].values():
|
| 526 |
if section['status'] != 'N/A':
|
| 527 |
+
all_na = False
|
| 528 |
questions = section.get('questions', {})
|
| 529 |
completed += sum(1 for q in questions.values() if q)
|
| 530 |
total += len(questions)
|
| 531 |
|
| 532 |
+
if all_na:
|
| 533 |
+
score = BASE_SCORE
|
| 534 |
+
display_score = 0
|
| 535 |
+
status = 'N/A'
|
| 536 |
+
elif total > 0:
|
| 537 |
+
raw_score = (completed / total) * 100
|
| 538 |
+
score = BASE_SCORE + (90 * raw_score / 100)
|
| 539 |
+
display_score = raw_score
|
| 540 |
+
status = 'Active'
|
| 541 |
+
else:
|
| 542 |
+
score = BASE_SCORE
|
| 543 |
+
display_score = 0
|
| 544 |
+
status = 'Active'
|
| 545 |
+
|
| 546 |
+
system_data.append({
|
| 547 |
+
'AI System': system_name,
|
| 548 |
+
'Category': category_name,
|
| 549 |
+
'Score': score,
|
| 550 |
+
'Display Score': display_score,
|
| 551 |
+
'Status': status,
|
| 552 |
+
'Original Score': f"{display_score:.1f}%",
|
| 553 |
+
'Completed': completed,
|
| 554 |
+
'Total': total
|
| 555 |
+
})
|
| 556 |
+
if system_data:
|
| 557 |
+
# Add first point again to close the shape
|
| 558 |
+
system_data.append(system_data[0].copy())
|
| 559 |
+
all_data.extend(system_data)
|
| 560 |
+
|
| 561 |
+
df = pd.DataFrame(all_data)
|
| 562 |
|
| 563 |
if df.empty:
|
| 564 |
+
fig = go.Figure()
|
| 565 |
+
fig.add_annotation(
|
| 566 |
+
text="No data available for the selected AI systems and categories",
|
| 567 |
+
xref="paper", yref="paper",
|
| 568 |
+
x=0.5, y=0.5,
|
| 569 |
+
showarrow=False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 570 |
)
|
| 571 |
+
return fig
|
| 572 |
+
|
| 573 |
+
fig = go.Figure()
|
| 574 |
+
|
| 575 |
+
# Define colors
|
| 576 |
+
colors = [
|
| 577 |
+
'#FF4B4B', '#4B7BFF', '#4BFF4B', '#FFD700', '#FF4BFF',
|
| 578 |
+
'#4BFFFF', '#FF884B', '#884BFF', '#4BFF88', '#FFFF4B'
|
| 579 |
+
]
|
| 580 |
+
|
| 581 |
+
# Calculate average scores for sorting
|
| 582 |
+
system_scores = {
|
| 583 |
+
system: df[df['AI System'] == system]['Score'].mean()
|
| 584 |
+
for system in selected_systems
|
| 585 |
+
}
|
| 586 |
+
sorted_systems = sorted(selected_systems,
|
| 587 |
+
key=lambda x: system_scores[x],
|
| 588 |
+
reverse=True)
|
| 589 |
+
|
| 590 |
+
# Plot each system
|
| 591 |
+
for idx, system_name in enumerate(sorted_systems):
|
| 592 |
+
system_df = df[df['AI System'] == system_name]
|
| 593 |
|
| 594 |
+
# Get color for this system
|
| 595 |
+
base_color = colors[idx % len(colors)]
|
| 596 |
+
line_color = hex_to_rgba(base_color, 0.9)
|
| 597 |
+
fill_color = hex_to_rgba(base_color, 0.15)
|
| 598 |
+
hover_color = hex_to_rgba(base_color, 1.0)
|
| 599 |
+
|
| 600 |
+
# First, add the complete shape with all points (including N/A)
|
| 601 |
+
fig.add_trace(go.Scatterpolar(
|
| 602 |
+
r=system_df['Score'].tolist(),
|
| 603 |
+
theta=system_df['Category'].tolist(),
|
| 604 |
+
name=system_name,
|
| 605 |
+
fill='toself',
|
| 606 |
+
line=dict(color=line_color),
|
| 607 |
+
fillcolor=fill_color,
|
| 608 |
+
hoverinfo='skip', # Disable hover for the shape trace
|
| 609 |
+
showlegend=True
|
| 610 |
+
))
|
| 611 |
+
|
| 612 |
+
# Then add separate trace for hover information on non-N/A points
|
| 613 |
+
non_na_df = system_df[system_df['Status'] != 'N/A']
|
| 614 |
+
if not non_na_df.empty:
|
| 615 |
+
fig.add_trace(go.Scatterpolar(
|
| 616 |
+
r=non_na_df['Score'].tolist(),
|
| 617 |
+
theta=non_na_df['Category'].tolist(),
|
| 618 |
+
mode='markers',
|
| 619 |
+
marker=dict(size=1, color='rgba(0,0,0,0)'), # Nearly invisible markers
|
| 620 |
+
customdata=list(zip(
|
| 621 |
+
non_na_df['Original Score'],
|
| 622 |
+
non_na_df['Status'],
|
| 623 |
+
non_na_df['Completed'],
|
| 624 |
+
non_na_df['Total']
|
| 625 |
+
)),
|
| 626 |
+
hovertemplate=(
|
| 627 |
+
f"<span style='background-color: {hover_color}; color: white; padding: 10px; display: block'>" +
|
| 628 |
+
"<b>%{theta}</b><br>" +
|
| 629 |
+
f"AI System: {system_name}<br>" +
|
| 630 |
+
"Score: %{customdata[0]}<br>" +
|
| 631 |
+
"Status: %{customdata[1]}<br>" +
|
| 632 |
+
"Evaluations completed: %{customdata[2]}/%{customdata[3]}" +
|
| 633 |
+
"</span>" +
|
| 634 |
+
"<extra></extra>"),
|
| 635 |
+
showlegend=False
|
| 636 |
+
))
|
| 637 |
+
|
| 638 |
+
# Finally add N/A markers
|
| 639 |
+
na_df = system_df[system_df['Status'] == 'N/A']
|
| 640 |
+
if not na_df.empty:
|
| 641 |
+
fig.add_trace(go.Scatterpolar(
|
| 642 |
+
r=na_df['Score'].tolist(),
|
| 643 |
+
theta=na_df['Category'].tolist(),
|
| 644 |
+
mode='markers+lines',
|
| 645 |
+
line=dict(color='rgba(128, 128, 128, 0.3)', dash='dot'),
|
| 646 |
+
marker=dict(color='rgba(128, 128, 128, 0.3)', size=8),
|
| 647 |
+
customdata=list(zip(
|
| 648 |
+
na_df['Original Score'],
|
| 649 |
+
na_df['Status'],
|
| 650 |
+
na_df['Completed'],
|
| 651 |
+
na_df['Total']
|
| 652 |
+
)),
|
| 653 |
+
hovertemplate="<b>%{theta}</b><br>" +
|
| 654 |
+
f"AI System: {system_name}<br>" +
|
| 655 |
+
"Status: N/A<br>" +
|
| 656 |
+
"Evaluations completed: %{customdata[2]}/%{customdata[3]}<br>" +
|
| 657 |
+
"<extra></extra>",
|
| 658 |
+
showlegend=False
|
| 659 |
+
))
|
| 660 |
+
|
| 661 |
+
# Update layout
|
| 662 |
+
fig.update_layout(
|
| 663 |
+
polar=dict(
|
| 664 |
+
radialaxis=dict(
|
| 665 |
+
visible=True,
|
| 666 |
+
range=[0, 100],
|
| 667 |
+
ticksuffix='%',
|
| 668 |
+
showline=True,
|
| 669 |
+
linewidth=1,
|
| 670 |
+
gridwidth=1,
|
| 671 |
+
gridcolor='rgba(0,0,0,0.1)',
|
| 672 |
+
ticktext=[f'{i}%' for i in range(0, 101, 20)],
|
| 673 |
+
tickvals=list(range(0, 101, 20))
|
| 674 |
+
),
|
| 675 |
+
angularaxis=dict(
|
| 676 |
+
gridcolor='rgba(0,0,0,0.1)',
|
| 677 |
+
linecolor='rgba(0,0,0,0.1)',
|
| 678 |
+
)
|
| 679 |
+
),
|
| 680 |
+
showlegend=True,
|
| 681 |
+
title=dict(
|
| 682 |
+
text='Category Completion Rates by AI System',
|
| 683 |
+
x=0.5,
|
| 684 |
+
xanchor='center'
|
| 685 |
+
),
|
| 686 |
+
legend=dict(
|
| 687 |
+
yanchor="top",
|
| 688 |
+
y=1.2,
|
| 689 |
+
xanchor="left",
|
| 690 |
+
x=1.1
|
| 691 |
+
),
|
| 692 |
+
margin=dict(t=100, b=100, l=100, r=100)
|
| 693 |
+
)
|
| 694 |
|
| 695 |
return fig
|
| 696 |
|