ewhk9887 commited on
Commit
5d0faac
ยท
verified ยท
1 Parent(s): 9f62df2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +54 -51
app.py CHANGED
@@ -1,64 +1,67 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("ewhk9887/deepseek-cokoder")
8
 
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
  temperature=temperature,
35
  top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
 
 
 
 
 
 
 
 
38
 
39
- response += token
40
- yield response
 
 
 
 
 
 
 
 
41
 
 
 
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a code review assistant. Provide helpful feedback on the given code.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
 
 
 
 
 
 
 
62
 
 
63
  if __name__ == "__main__":
64
  demo.launch()
 
1
  import gradio as gr
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer
3
+ import torch
4
 
5
+ # ๋ชจ๋ธ ๋กœ๋“œ
6
+ MODEL_NAME = "ewhk9887/deepseek-cokoder"
 
 
7
 
8
+ device = "cuda" if torch.cuda.is_available() else "cpu"
9
+ model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch.float16 if device == "cuda" else torch.float32)
10
+ model.to(device)
11
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
12
 
13
+ # ์ฝ”๋“œ ๋ฆฌ๋ทฐ ์ƒ์„ฑ ํ•จ์ˆ˜
14
+ def generate_code_review(user_input, system_message, max_tokens, temperature, top_p):
15
+ """
16
+ ์‚ฌ์šฉ์ž ์ž…๋ ฅ๊ณผ ์‹œ์Šคํ…œ ๋ฉ”์‹œ์ง€๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ AI ์ฝ”๋“œ ๋ฆฌ๋ทฐ ์ƒ์„ฑ.
17
+ """
18
+ # ๋ฉ”์‹œ์ง€ ํฌ๋งท ์ƒ์„ฑ
19
+ prompt = f"{system_message}\n\nCode:\n{user_input}\n\nReview:"
20
+ inputs = tokenizer(prompt, return_tensors="pt").to(device)
21
+
22
+ # ๋ชจ๋ธ ์ถœ๋ ฅ ์ƒ์„ฑ
23
+ outputs = model.generate(
24
+ inputs.input_ids,
25
+ max_new_tokens=max_tokens,
 
 
 
 
 
 
 
 
 
 
 
26
  temperature=temperature,
27
  top_p=top_p,
28
+ repetition_penalty=1.1,
29
+ pad_token_id=tokenizer.eos_token_id
30
+ )
31
+ review = tokenizer.decode(outputs[0], skip_special_tokens=True)
32
+ return review
33
+
34
+ # Gradio ์ธํ„ฐํŽ˜์ด์Šค ์ƒ์„ฑ
35
+ with gr.Blocks() as demo:
36
+ gr.Markdown("# DeepSeek Code Review Assistant")
37
+ gr.Markdown("AI๊ฐ€ ์ฝ”๋“œ์— ๋Œ€ํ•œ ๋ฆฌ๋ทฐ๋ฅผ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ์ฝ”๋“œ๋ฅผ ์ž…๋ ฅํ•˜๊ณ  ๋ฆฌ๋ทฐ๋ฅผ ํ™•์ธํ•˜์„ธ์š”!")
38
 
39
+ with gr.Row():
40
+ with gr.Column():
41
+ code_input = gr.Textbox(label="์ฝ”๋“œ ์ž…๋ ฅ", placeholder="๋ฆฌ๋ทฐ๋ฅผ ์›ํ•˜๋Š” ์ฝ”๋“œ๋ฅผ ์ž…๋ ฅํ•˜์„ธ์š”...", lines=10)
42
+ system_message = gr.Textbox(
43
+ label="์‹œ์Šคํ…œ ๋ฉ”์‹œ์ง€",
44
+ value="You are a helpful assistant providing detailed and constructive code reviews.",
45
+ lines=3,
46
+ )
47
+ with gr.Column():
48
+ review_output = gr.Textbox(label="์ฝ”๋“œ ๋ฆฌ๋ทฐ ๊ฒฐ๊ณผ", lines=10)
49
 
50
+ # ์ถ”๊ฐ€ ์˜ต์…˜
51
+ max_tokens = gr.Slider(label="Max Tokens", minimum=10, maximum=512, value=256, step=10)
52
+ temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=1.0, value=0.7, step=0.1)
53
+ top_p = gr.Slider(label="Top-p", minimum=0.1, maximum=1.0, value=0.9, step=0.05)
54
 
55
+ # ๋ฒ„ํŠผ
56
+ generate_button = gr.Button("๋ฆฌ๋ทฐ ์ƒ์„ฑ")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57
 
58
+ # ์ด๋ฒคํŠธ ์—ฐ๊ฒฐ
59
+ generate_button.click(
60
+ fn=generate_code_review,
61
+ inputs=[code_input, system_message, max_tokens, temperature, top_p],
62
+ outputs=review_output,
63
+ )
64
 
65
+ # ์‹คํ–‰
66
  if __name__ == "__main__":
67
  demo.launch()