File size: 2,071 Bytes
287a0bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Prior to running the below make sure that you have an HF server running:\n",
    "\n",
    "You can run:\n",
    "\n",
    "```bash\n",
    "docker compose -f examples/server_side_embeddings/huggingface/docker-compose.yml up -d\n",
    "```"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "/Users/tazarov/experiments/chroma-experiments/1367_hugging_face_embedding_server\n"
     ]
    }
   ],
   "source": [
    "%cd ../../../"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{'ids': [['test']],\n",
       " 'distances': [[0.0]],\n",
       " 'embeddings': None,\n",
       " 'metadatas': [[None]],\n",
       " 'documents': [['test']],\n",
       " 'uris': None,\n",
       " 'data': None}"
      ]
     },
     "execution_count": 12,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "import chromadb\n",
    "\n",
    "from chromadb.utils.embedding_functions import HuggingFaceEmbeddingServer\n",
    "\n",
    "\n",
    "ef = HuggingFaceEmbeddingServer(url=\"http://localhost:8001/embed\")\n",
    "\n",
    "client = chromadb.HttpClient(\"http://localhost:8000/\")\n",
    "\n",
    "col=client.get_or_create_collection(\"test\",embedding_function=ef)\n",
    "\n",
    "col.add(documents=[\"test\"],ids=[\"test\"])\n",
    "\n",
    "col.query(query_texts=[\"test\"])"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.2"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}