Daniil Bogdanov
commited on
Commit
·
c531eac
1
Parent(s):
81917a3
Release v1
Browse files- agent.py +68 -0
- app.py +77 -30
- model.py +53 -0
- requirements.txt +11 -1
- tools.py +35 -0
- utils/logger.py +20 -0
agent.py
ADDED
|
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Any, Optional
|
| 2 |
+
|
| 3 |
+
from smolagents import CodeAgent
|
| 4 |
+
|
| 5 |
+
from utils.logger import get_logger
|
| 6 |
+
|
| 7 |
+
logger = get_logger(__name__)
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class Agent:
|
| 11 |
+
def __init__(
|
| 12 |
+
self, model: Any, tools: Optional[list] = None, prompt: Optional[str] = None
|
| 13 |
+
):
|
| 14 |
+
logger.info("Initializing Agent")
|
| 15 |
+
|
| 16 |
+
self.model = model
|
| 17 |
+
|
| 18 |
+
self.tools = tools
|
| 19 |
+
|
| 20 |
+
self.imports = [
|
| 21 |
+
"pandas",
|
| 22 |
+
"numpy",
|
| 23 |
+
"os",
|
| 24 |
+
"requests",
|
| 25 |
+
"tempfile",
|
| 26 |
+
"datetime",
|
| 27 |
+
"json",
|
| 28 |
+
"time",
|
| 29 |
+
"re",
|
| 30 |
+
"openpyxl",
|
| 31 |
+
]
|
| 32 |
+
|
| 33 |
+
self.agent = CodeAgent(
|
| 34 |
+
model=self.model,
|
| 35 |
+
tools=self.tools,
|
| 36 |
+
add_base_tools=True,
|
| 37 |
+
additional_authorized_imports=self.imports,
|
| 38 |
+
)
|
| 39 |
+
|
| 40 |
+
self.prompt = prompt or (
|
| 41 |
+
"""
|
| 42 |
+
You are an advanced AI assistant specialized in solving complex, real-world tasks that require multi-step reasoning, factual accuracy, and use of external tools.
|
| 43 |
+
|
| 44 |
+
Follow these principles:
|
| 45 |
+
- Be precise and concise. The final answer must strictly match the required format with no extra commentary.
|
| 46 |
+
- Use tools intelligently. If a question involves external information, structured data, images, or audio, call the appropriate tool to retrieve or process it.
|
| 47 |
+
- Reason step-by-step. Think through the solution logically and plan your actions carefully before answering.
|
| 48 |
+
- Validate information. Always verify facts when possible instead of guessing.
|
| 49 |
+
- Use code if needed. For calculations, parsing, or transformations, generate Python code and execute it.
|
| 50 |
+
|
| 51 |
+
IMPORTANT: When giving the final answer, output only the direct required result without any extra text like "Final Answer:" or explanations. YOU MUST RESPOND IN THE EXACT FORMAT AS THE QUESTION.
|
| 52 |
+
|
| 53 |
+
QUESTION: {question}
|
| 54 |
+
|
| 55 |
+
CONTEXT: {context}
|
| 56 |
+
|
| 57 |
+
ANSWER:
|
| 58 |
+
"""
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
+
logger.info("Agent initialized")
|
| 62 |
+
|
| 63 |
+
def __call__(self, question: str, file_path: Optional[str] = None) -> str:
|
| 64 |
+
answer = self.agent.run(
|
| 65 |
+
self.prompt.format(question=question, context=file_path)
|
| 66 |
+
)
|
| 67 |
+
answer = str(answer).strip("'").strip('"').strip()
|
| 68 |
+
return answer
|
app.py
CHANGED
|
@@ -1,34 +1,43 @@
|
|
|
|
|
| 1 |
import os
|
|
|
|
|
|
|
| 2 |
import gradio as gr
|
| 3 |
-
import requests
|
| 4 |
-
import inspect
|
| 5 |
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
# (Keep Constants as is)
|
| 8 |
# --- Constants ---
|
| 9 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
| 10 |
|
|
|
|
| 11 |
# --- Basic Agent Definition ---
|
| 12 |
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
| 13 |
class BasicAgent:
|
| 14 |
def __init__(self):
|
| 15 |
print("BasicAgent initialized.")
|
|
|
|
| 16 |
def __call__(self, question: str) -> str:
|
| 17 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
| 18 |
fixed_answer = "This is a default answer."
|
| 19 |
print(f"Agent returning fixed answer: {fixed_answer}")
|
| 20 |
return fixed_answer
|
| 21 |
|
| 22 |
-
|
|
|
|
| 23 |
"""
|
| 24 |
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
| 25 |
and displays the results.
|
| 26 |
"""
|
| 27 |
# --- Determine HF Space Runtime URL and Repo URL ---
|
| 28 |
-
space_id = os.getenv("SPACE_ID")
|
| 29 |
|
| 30 |
if profile:
|
| 31 |
-
username= f"{profile.username}"
|
| 32 |
print(f"User logged in: {username}")
|
| 33 |
else:
|
| 34 |
print("User not logged in.")
|
|
@@ -37,10 +46,13 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
| 37 |
api_url = DEFAULT_API_URL
|
| 38 |
questions_url = f"{api_url}/questions"
|
| 39 |
submit_url = f"{api_url}/submit"
|
|
|
|
| 40 |
|
| 41 |
# 1. Instantiate Agent ( modify this part to create your agent)
|
| 42 |
try:
|
| 43 |
-
agent =
|
|
|
|
|
|
|
| 44 |
except Exception as e:
|
| 45 |
print(f"Error instantiating agent: {e}")
|
| 46 |
return f"Error initializing agent: {e}", None
|
|
@@ -55,16 +67,16 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
| 55 |
response.raise_for_status()
|
| 56 |
questions_data = response.json()
|
| 57 |
if not questions_data:
|
| 58 |
-
|
| 59 |
-
|
| 60 |
print(f"Fetched {len(questions_data)} questions.")
|
| 61 |
except requests.exceptions.RequestException as e:
|
| 62 |
print(f"Error fetching questions: {e}")
|
| 63 |
return f"Error fetching questions: {e}", None
|
| 64 |
except requests.exceptions.JSONDecodeError as e:
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
except Exception as e:
|
| 69 |
print(f"An unexpected error occurred fetching questions: {e}")
|
| 70 |
return f"An unexpected error occurred fetching questions: {e}", None
|
|
@@ -80,19 +92,51 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
| 80 |
print(f"Skipping item with missing task_id or question: {item}")
|
| 81 |
continue
|
| 82 |
try:
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
except Exception as e:
|
| 87 |
-
|
| 88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
|
| 90 |
if not answers_payload:
|
| 91 |
print("Agent did not produce any answers to submit.")
|
| 92 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
| 93 |
|
| 94 |
-
# 4. Prepare Submission
|
| 95 |
-
submission_data = {
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
| 97 |
print(status_update)
|
| 98 |
|
|
@@ -162,20 +206,19 @@ with gr.Blocks() as demo:
|
|
| 162 |
|
| 163 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
| 164 |
|
| 165 |
-
status_output = gr.Textbox(
|
|
|
|
|
|
|
| 166 |
# Removed max_rows=10 from DataFrame constructor
|
| 167 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
| 168 |
|
| 169 |
-
run_button.click(
|
| 170 |
-
fn=run_and_submit_all,
|
| 171 |
-
outputs=[status_output, results_table]
|
| 172 |
-
)
|
| 173 |
|
| 174 |
if __name__ == "__main__":
|
| 175 |
-
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
| 176 |
# Check for SPACE_HOST and SPACE_ID at startup for information
|
| 177 |
space_host_startup = os.getenv("SPACE_HOST")
|
| 178 |
-
space_id_startup = os.getenv("SPACE_ID")
|
| 179 |
|
| 180 |
if space_host_startup:
|
| 181 |
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
|
@@ -183,14 +226,18 @@ if __name__ == "__main__":
|
|
| 183 |
else:
|
| 184 |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
| 185 |
|
| 186 |
-
if space_id_startup:
|
| 187 |
print(f"✅ SPACE_ID found: {space_id_startup}")
|
| 188 |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
| 189 |
-
print(
|
|
|
|
|
|
|
| 190 |
else:
|
| 191 |
-
print(
|
|
|
|
|
|
|
| 192 |
|
| 193 |
-
print("-"*(60 + len(" App Starting ")) + "\n")
|
| 194 |
|
| 195 |
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
| 196 |
-
demo.launch(debug=True, share=False)
|
|
|
|
| 1 |
+
import inspect
|
| 2 |
import os
|
| 3 |
+
import tempfile
|
| 4 |
+
|
| 5 |
import gradio as gr
|
|
|
|
|
|
|
| 6 |
import pandas as pd
|
| 7 |
+
import requests
|
| 8 |
+
|
| 9 |
+
from agent import Agent
|
| 10 |
+
from model import get_model
|
| 11 |
+
from tools import get_tools
|
| 12 |
|
| 13 |
# (Keep Constants as is)
|
| 14 |
# --- Constants ---
|
| 15 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
| 16 |
|
| 17 |
+
|
| 18 |
# --- Basic Agent Definition ---
|
| 19 |
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
| 20 |
class BasicAgent:
|
| 21 |
def __init__(self):
|
| 22 |
print("BasicAgent initialized.")
|
| 23 |
+
|
| 24 |
def __call__(self, question: str) -> str:
|
| 25 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
| 26 |
fixed_answer = "This is a default answer."
|
| 27 |
print(f"Agent returning fixed answer: {fixed_answer}")
|
| 28 |
return fixed_answer
|
| 29 |
|
| 30 |
+
|
| 31 |
+
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
| 32 |
"""
|
| 33 |
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
| 34 |
and displays the results.
|
| 35 |
"""
|
| 36 |
# --- Determine HF Space Runtime URL and Repo URL ---
|
| 37 |
+
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
| 38 |
|
| 39 |
if profile:
|
| 40 |
+
username = f"{profile.username}"
|
| 41 |
print(f"User logged in: {username}")
|
| 42 |
else:
|
| 43 |
print("User not logged in.")
|
|
|
|
| 46 |
api_url = DEFAULT_API_URL
|
| 47 |
questions_url = f"{api_url}/questions"
|
| 48 |
submit_url = f"{api_url}/submit"
|
| 49 |
+
files_url = f"{api_url}/files"
|
| 50 |
|
| 51 |
# 1. Instantiate Agent ( modify this part to create your agent)
|
| 52 |
try:
|
| 53 |
+
agent = Agent(
|
| 54 |
+
model=get_model("OpenAIServerModel", "gpt-4.1-mini"), tools=get_tools()
|
| 55 |
+
)
|
| 56 |
except Exception as e:
|
| 57 |
print(f"Error instantiating agent: {e}")
|
| 58 |
return f"Error initializing agent: {e}", None
|
|
|
|
| 67 |
response.raise_for_status()
|
| 68 |
questions_data = response.json()
|
| 69 |
if not questions_data:
|
| 70 |
+
print("Fetched questions list is empty.")
|
| 71 |
+
return "Fetched questions list is empty or invalid format.", None
|
| 72 |
print(f"Fetched {len(questions_data)} questions.")
|
| 73 |
except requests.exceptions.RequestException as e:
|
| 74 |
print(f"Error fetching questions: {e}")
|
| 75 |
return f"Error fetching questions: {e}", None
|
| 76 |
except requests.exceptions.JSONDecodeError as e:
|
| 77 |
+
print(f"Error decoding JSON response from questions endpoint: {e}")
|
| 78 |
+
print(f"Response text: {response.text[:500]}")
|
| 79 |
+
return f"Error decoding server response for questions: {e}", None
|
| 80 |
except Exception as e:
|
| 81 |
print(f"An unexpected error occurred fetching questions: {e}")
|
| 82 |
return f"An unexpected error occurred fetching questions: {e}", None
|
|
|
|
| 92 |
print(f"Skipping item with missing task_id or question: {item}")
|
| 93 |
continue
|
| 94 |
try:
|
| 95 |
+
file_path = None
|
| 96 |
+
try:
|
| 97 |
+
file_response = requests.get(f"{files_url}/{task_id}", timeout=15)
|
| 98 |
+
if file_response.status_code == 200 and file_response.content:
|
| 99 |
+
with tempfile.NamedTemporaryFile(delete=False) as tmp_file:
|
| 100 |
+
tmp_file.write(file_response.content)
|
| 101 |
+
file_path = tmp_file.name
|
| 102 |
+
print(f"Downloaded file for task {task_id} to {file_path}")
|
| 103 |
+
else:
|
| 104 |
+
print(f"No file for task {task_id} or file is empty.")
|
| 105 |
+
except Exception as e:
|
| 106 |
+
print(f"Error downloading file for task {task_id}: {e}")
|
| 107 |
+
file_path = None
|
| 108 |
+
|
| 109 |
+
submitted_answer = agent(question_text, file_path)
|
| 110 |
+
answers_payload.append(
|
| 111 |
+
{"task_id": task_id, "submitted_answer": submitted_answer}
|
| 112 |
+
)
|
| 113 |
+
results_log.append(
|
| 114 |
+
{
|
| 115 |
+
"Task ID": task_id,
|
| 116 |
+
"Question": question_text,
|
| 117 |
+
"Submitted Answer": submitted_answer,
|
| 118 |
+
}
|
| 119 |
+
)
|
| 120 |
except Exception as e:
|
| 121 |
+
print(f"Error running agent on task {task_id}: {e}")
|
| 122 |
+
results_log.append(
|
| 123 |
+
{
|
| 124 |
+
"Task ID": task_id,
|
| 125 |
+
"Question": question_text,
|
| 126 |
+
"Submitted Answer": f"AGENT ERROR: {e}",
|
| 127 |
+
}
|
| 128 |
+
)
|
| 129 |
|
| 130 |
if not answers_payload:
|
| 131 |
print("Agent did not produce any answers to submit.")
|
| 132 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
| 133 |
|
| 134 |
+
# 4. Prepare Submission
|
| 135 |
+
submission_data = {
|
| 136 |
+
"username": username.strip(),
|
| 137 |
+
"agent_code": agent_code,
|
| 138 |
+
"answers": answers_payload,
|
| 139 |
+
}
|
| 140 |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
| 141 |
print(status_update)
|
| 142 |
|
|
|
|
| 206 |
|
| 207 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
| 208 |
|
| 209 |
+
status_output = gr.Textbox(
|
| 210 |
+
label="Run Status / Submission Result", lines=5, interactive=False
|
| 211 |
+
)
|
| 212 |
# Removed max_rows=10 from DataFrame constructor
|
| 213 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
| 214 |
|
| 215 |
+
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
|
|
|
|
|
|
|
|
|
|
| 216 |
|
| 217 |
if __name__ == "__main__":
|
| 218 |
+
print("\n" + "-" * 30 + " App Starting " + "-" * 30)
|
| 219 |
# Check for SPACE_HOST and SPACE_ID at startup for information
|
| 220 |
space_host_startup = os.getenv("SPACE_HOST")
|
| 221 |
+
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
|
| 222 |
|
| 223 |
if space_host_startup:
|
| 224 |
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
|
|
|
| 226 |
else:
|
| 227 |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
| 228 |
|
| 229 |
+
if space_id_startup: # Print repo URLs if SPACE_ID is found
|
| 230 |
print(f"✅ SPACE_ID found: {space_id_startup}")
|
| 231 |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
| 232 |
+
print(
|
| 233 |
+
f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main"
|
| 234 |
+
)
|
| 235 |
else:
|
| 236 |
+
print(
|
| 237 |
+
"ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined."
|
| 238 |
+
)
|
| 239 |
|
| 240 |
+
print("-" * (60 + len(" App Starting ")) + "\n")
|
| 241 |
|
| 242 |
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
| 243 |
+
demo.launch(debug=True, share=False)
|
model.py
ADDED
|
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from typing import Any
|
| 3 |
+
|
| 4 |
+
from smolagents import HfApiModel, InferenceClientModel, LiteLLMModel, OpenAIServerModel
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def get_huggingface_api_model(model_id: str, **kwargs) -> Any:
|
| 8 |
+
api_key = os.getenv("HUGGINGFACEHUB_API_TOKEN")
|
| 9 |
+
if not api_key:
|
| 10 |
+
raise ValueError("HUGGINGFACEHUB_API_TOKEN is not set")
|
| 11 |
+
|
| 12 |
+
return HfApiModel(model_id=model_id, token=api_key, **kwargs)
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def get_inference_client_model(model_id: str, **kwargs) -> Any:
|
| 16 |
+
api_key = os.getenv("HUGGINGFACEHUB_API_TOKEN")
|
| 17 |
+
if not api_key:
|
| 18 |
+
raise ValueError("HUGGINGFACEHUB_API_TOKEN is not set")
|
| 19 |
+
|
| 20 |
+
return InferenceClientModel(model_id=model_id, token=api_key, **kwargs)
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def get_openai_server_model(model_id: str, **kwargs) -> Any:
|
| 24 |
+
api_key = os.getenv("OPENAI_API_KEY")
|
| 25 |
+
if not api_key:
|
| 26 |
+
raise ValueError("OPENAI_API_KEY is not set")
|
| 27 |
+
|
| 28 |
+
api_base = os.getenv("OPENAI_API_BASE")
|
| 29 |
+
if not api_base:
|
| 30 |
+
raise ValueError("OPENAI_API_BASE is not set")
|
| 31 |
+
|
| 32 |
+
return OpenAIServerModel(
|
| 33 |
+
model_id=model_id, api_key=api_key, api_base=api_base, **kwargs
|
| 34 |
+
)
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def get_lite_llm_model(model_id: str, **kwargs) -> Any:
|
| 38 |
+
return LiteLLMModel(model_id=model_id, **kwargs)
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def get_model(model_type: str, model_id: str, **kwargs) -> Any:
|
| 42 |
+
|
| 43 |
+
models = {
|
| 44 |
+
"HfApiModel": get_huggingface_api_model,
|
| 45 |
+
"InferenceClientModel": get_inference_client_model,
|
| 46 |
+
"OpenAIServerModel": get_openai_server_model,
|
| 47 |
+
"LiteLLMModel": get_lite_llm_model,
|
| 48 |
+
}
|
| 49 |
+
|
| 50 |
+
if model_type not in models:
|
| 51 |
+
raise ValueError(f"Unknown model type: {model_type}")
|
| 52 |
+
|
| 53 |
+
return models[model_type](model_id, **kwargs)
|
requirements.txt
CHANGED
|
@@ -1,2 +1,12 @@
|
|
| 1 |
gradio
|
| 2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
gradio
|
| 2 |
+
numpy
|
| 3 |
+
openpyxl
|
| 4 |
+
pandas
|
| 5 |
+
requests
|
| 6 |
+
smolagents
|
| 7 |
+
smolagents[audio]
|
| 8 |
+
smolagents[openai]
|
| 9 |
+
smolagents[transformers]
|
| 10 |
+
transformers
|
| 11 |
+
wikipedia-api
|
| 12 |
+
youtube-transcript-api
|
tools.py
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from smolagents import (
|
| 2 |
+
DuckDuckGoSearchTool,
|
| 3 |
+
PythonInterpreterTool,
|
| 4 |
+
SpeechToTextTool,
|
| 5 |
+
Tool,
|
| 6 |
+
VisitWebpageTool,
|
| 7 |
+
WikipediaSearchTool,
|
| 8 |
+
)
|
| 9 |
+
from youtube_transcript_api import YouTubeTranscriptApi
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class YouTubeTranscriptionTool(Tool):
|
| 13 |
+
name = "youtube_transcription"
|
| 14 |
+
description = "Fetches the transcript of a YouTube video given its URL"
|
| 15 |
+
inputs = {
|
| 16 |
+
"video_url": {"type": "string", "description": "YouTube video URL"},
|
| 17 |
+
}
|
| 18 |
+
output_type = "string"
|
| 19 |
+
|
| 20 |
+
def forward(self, video_url: str) -> str:
|
| 21 |
+
video_id = video_url.strip().split("v=")[-1]
|
| 22 |
+
transcript = YouTubeTranscriptApi.get_transcript(video_id)
|
| 23 |
+
return " ".join([entry["text"] for entry in transcript])
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def get_tools():
|
| 27 |
+
tools = [
|
| 28 |
+
DuckDuckGoSearchTool(),
|
| 29 |
+
PythonInterpreterTool(),
|
| 30 |
+
WikipediaSearchTool(),
|
| 31 |
+
VisitWebpageTool(),
|
| 32 |
+
SpeechToTextTool(),
|
| 33 |
+
YouTubeTranscriptionTool(),
|
| 34 |
+
]
|
| 35 |
+
return tools
|
utils/logger.py
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import logging
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
def get_logger(name: str = __name__) -> logging.Logger:
|
| 5 |
+
"""
|
| 6 |
+
Create and configure a logger.
|
| 7 |
+
|
| 8 |
+
Args:
|
| 9 |
+
name (str, optional): Name of the logger. Defaults to the module name.
|
| 10 |
+
|
| 11 |
+
Returns:
|
| 12 |
+
logging.Logger: Configured logger instance.
|
| 13 |
+
"""
|
| 14 |
+
logging.basicConfig(
|
| 15 |
+
format="%(asctime)s:%(module)s:%(funcName)s:%(levelname)s: %(message)s",
|
| 16 |
+
datefmt="%Y-%m-%d %H:%M:%S",
|
| 17 |
+
)
|
| 18 |
+
logger = logging.getLogger(name)
|
| 19 |
+
logger.setLevel(logging.INFO)
|
| 20 |
+
return logger
|