File size: 7,216 Bytes
5d8d025
335e8ff
 
5ab0078
 
 
 
 
 
 
5d8d025
335e8ff
 
 
 
5ab0078
 
 
 
 
 
 
 
 
 
 
 
403eecc
04b4d4a
 
 
 
 
5ab0078
 
335e8ff
 
5ab0078
335e8ff
 
5d8d025
5ab0078
 
 
 
 
 
 
 
 
 
 
 
5d8d025
5ab0078
 
335e8ff
 
04b4d4a
 
 
 
 
5ab0078
 
335e8ff
5ab0078
 
 
335e8ff
 
 
5ab0078
 
335e8ff
5ab0078
04b4d4a
5ab0078
 
 
 
 
 
 
 
335e8ff
 
5ab0078
 
 
335e8ff
5ab0078
 
 
 
 
 
 
 
 
335e8ff
5ab0078
335e8ff
 
5ab0078
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
335e8ff
 
 
5d8d025
 
335e8ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ab0078
 
 
 
 
 
 
 
 
 
 
335e8ff
 
5ab0078
 
 
 
 
 
 
 
 
335e8ff
 
 
 
 
 
5ab0078
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import streamlit as st
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
import time
from concurrent.futures import ThreadPoolExecutor, TimeoutError
import logging

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

@st.cache_resource
def load_model():
    """Load model and tokenizer with caching"""
    try:
        st.spinner("Loading model... This may take a few minutes")
        logger.info("Starting model loading...")
        
        # Load with 8-bit quantization for CPU
        model = AutoModelForCausalLM.from_pretrained(
            "NousResearch/Llama-3.2-1B",
            load_in_8bit=True,          # Use 8-bit quantization
            device_map="auto",          # Automatically handle device placement
            low_cpu_mem_usage=True,
            torch_dtype=torch.float32 if not torch.cuda.is_available() else torch.float16
        )
        
        tokenizer = AutoTokenizer.from_pretrained("NousResearch/Llama-3.2-1B")
        
        # Set up padding token
        if tokenizer.pad_token is None:
            tokenizer.pad_token = tokenizer.eos_token
            model.config.pad_token_id = model.config.eos_token_id
        
        logger.info("Model loaded successfully")
        return model, tokenizer
    except Exception as e:
        logger.error(f"Error loading model: {str(e)}")
        st.error(f"Error loading model: {str(e)}")
        return None, None

def check_for_repetition(text, threshold=3):
    """Check if the generated text has too many repetitions"""
    words = text.split()
    if len(words) < threshold:
        return False
        
    # Check for repeated phrases
    for i in range(len(words) - threshold):
        phrase = ' '.join(words[i:i+threshold])
        if text.count(phrase) > 2:  # If phrase appears more than twice
            return True
    return False

def generate_response_with_timeout(model, tokenizer, prompt, timeout_seconds=30):
    """Generate response with timeout and repetition checking"""
    try:
        # Prepare the input
        inputs = tokenizer(
            prompt, 
            return_tensors="pt", 
            padding=True,
            truncation=True,
            max_length=256  # Reduced for CPU
        ).to(model.device)
        
        start_time = time.time()
        
        # Generate response with stricter parameters
        with torch.no_grad():
            outputs = model.generate(
                inputs["input_ids"],
                max_length=100,          # Shorter responses
                min_length=20,           # Ensure some minimum content
                num_return_sequences=1,
                temperature=0.8,         # Slightly higher temperature
                pad_token_id=tokenizer.pad_token_id,
                attention_mask=inputs["attention_mask"],
                do_sample=True,
                top_p=0.92,
                top_k=40,
                repetition_penalty=1.5,  # Increased repetition penalty
                no_repeat_ngram_size=3,  # Prevent 3-gram repetitions
                early_stopping=True,
                length_penalty=1.0
            )
        
        generation_time = time.time() - start_time
        logger.info(f"Response generated in {generation_time:.2f} seconds")
        
        response = tokenizer.decode(outputs[0], skip_special_tokens=True)
        response = response.replace(prompt, "").strip()
        
        # Check for repetitions and retry if necessary
        if check_for_repetition(response):
            logger.warning("Detected repetition, retrying with stricter parameters")
            return "I apologize, but I'm having trouble generating a coherent response. Could you try rephrasing your question?"
            
        return response
    
    except Exception as e:
        logger.error(f"Error in generation: {str(e)}")
        return f"Error generating response: {str(e)}"

# Page config
st.set_page_config(page_title="Chat with Quasar-32B", layout="wide")

# Add debug information in sidebar
with st.sidebar:
    st.write("### System Information")
    st.write("Model: Quasar-32B")
    
    # Device and memory information
    device = "GPU" if torch.cuda.is_available() else "CPU"
    st.write(f"Running on: {device}")
    if torch.cuda.is_available():
        st.write(f"GPU: {torch.cuda.get_device_name(0)}")
        st.write(f"Memory Usage: {torch.cuda.memory_allocated()/1024**2:.2f} MB")
    else:
        import psutil
        st.write(f"CPU Memory Usage: {psutil.Process().memory_info().rss / 1024**2:.2f} MB")
        st.write("⚠️ Running on CPU - Responses may be slow")
    
    # Model settings
    st.write("### Model Settings")
    if 'temperature' not in st.session_state:
        st.session_state.temperature = 0.8
    if 'max_length' not in st.session_state:
        st.session_state.max_length = 100
        
    st.session_state.temperature = st.slider("Temperature", 0.1, 1.0, st.session_state.temperature)
    st.session_state.max_length = st.slider("Max Length", 50, 200, st.session_state.max_length)

st.title("Chat with Quasar-32B")

# Initialize session state for chat history
if 'messages' not in st.session_state:
    st.session_state.messages = []

# Load model and tokenizer
model, tokenizer = load_model()

# Chat interface
st.write("### Chat")
chat_container = st.container()

# Display chat history
with chat_container:
    for message in st.session_state.messages:
        with st.chat_message(message["role"]):
            st.write(message["content"])

# User input
if prompt := st.chat_input("Type your message here"):
    # Add user message to chat history
    st.session_state.messages.append({"role": "user", "content": prompt})
    
    # Display user message
    with chat_container:
        with st.chat_message("user"):
            st.write(prompt)
    
    # Generate and display assistant response
    if model and tokenizer:
        with st.chat_message("assistant"):
            try:
                with st.spinner("Generating response... (timeout: 30s)"):
                    with ThreadPoolExecutor() as executor:
                        future = executor.submit(
                            generate_response_with_timeout, 
                            model, 
                            tokenizer, 
                            prompt
                        )
                        response = future.result(timeout=30)
                        
                st.write(response)
                st.session_state.messages.append({"role": "assistant", "content": response})
                
            except TimeoutError:
                error_msg = "Response generation timed out. The model might be overloaded."
                st.error(error_msg)
                logger.error(error_msg)
            except Exception as e:
                error_msg = f"Error generating response: {str(e)}"
                st.error(error_msg)
                logger.error(error_msg)
    else:
        st.error("Model failed to load. Please check your configuration.")

# Add a button to clear chat history
if st.button("Clear Chat History"):
    st.session_state.messages = []
    st.experimental_rerun()