File size: 17,110 Bytes
ecccd48 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 |
"""Train NEAT networks to play volleyball using hardware acceleration when available."""
import jax
import jax.numpy as jnp
from jax import random
from evojax.task.slimevolley import SlimeVolley
from typing import List, Tuple, Dict
import numpy as np
import time
from PIL import Image
import io
import os
# Try to initialize JAX with GPU
try:
# Configure JAX to use GPU
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
os.environ['XLA_PYTHON_CLIENT_PREALLOCATE'] = 'false'
os.environ['XLA_PYTHON_CLIENT_ALLOCATOR'] = 'platform'
# Check available devices
print(f"JAX devices available: {jax.devices()}")
print(f"Using device: {jax.devices()[0].platform.upper()}")
except Exception as e:
print(f"Note: Using CPU - {str(e)}")
class NodeGene:
"""A gene representing a node in the neural network."""
def __init__(self, id: int, node_type: str, activation: str = 'tanh'):
self.id = id
self.type = node_type # 'input', 'hidden', or 'output'
self.activation = activation
# Use deterministic key generation
seed = abs(hash(f"node_{id}")) % (2**32 - 1) # Ensure positive seed
key = random.PRNGKey(seed)
self.bias = float(random.normal(key, shape=()) * 0.1)
class ConnectionGene:
"""A gene representing a connection between nodes."""
def __init__(self, source: int, target: int, weight: float = None, enabled: bool = True):
self.source = source
self.target = target
self.enabled = enabled
self.innovation = hash((source, target))
if weight is None:
# Use deterministic key generation
seed = abs(hash(f"conn_{source}_{target}")) % (2**32 - 1)
key = random.PRNGKey(seed)
weight = float(random.normal(key, shape=()) * 0.1)
self.weight = weight
class Genome:
def __init__(self, n_inputs: int, n_outputs: int):
# Create input nodes (0 to n_inputs-1)
self.node_genes = {i: NodeGene(i, 'input') for i in range(n_inputs)}
# Create exactly 3 output nodes for left, right, jump
n_outputs = 3 # Force exactly 3 outputs
for i in range(n_outputs):
self.node_genes[n_inputs + i] = NodeGene(n_inputs + i, 'output')
self.connection_genes: List[ConnectionGene] = []
# Initialize with randomized connections using unique keys
seed = int(time.time() * 1000) % (2**32 - 1)
master_key = random.PRNGKey(seed)
# Add direct connections with random weights
for i in range(n_inputs):
for j in range(n_outputs):
master_key, key = random.split(master_key)
if random.uniform(key, shape=()) < 0.7: # 70% chance of connection
master_key, key = random.split(master_key)
weight = float(random.normal(key, shape=()) * 0.5) # Larger initial weights
self.connection_genes.append(
ConnectionGene(i, n_inputs + j, weight=weight)
)
# Add hidden nodes with random connections
master_key, key = random.split(master_key)
n_hidden = int(random.randint(key, (), 1, 4)) # Random number of hidden nodes
hidden_start = n_inputs + n_outputs
for i in range(n_hidden):
node_id = hidden_start + i
self.node_genes[node_id] = NodeGene(node_id, 'hidden')
# Connect random inputs to this hidden node
for j in range(n_inputs):
master_key, key = random.split(master_key)
if random.uniform(key, shape=()) < 0.5:
master_key, key = random.split(master_key)
weight = float(random.normal(key, shape=()) * 0.5)
self.connection_genes.append(
ConnectionGene(j, node_id, weight=weight)
)
# Connect this hidden node to random outputs
for j in range(n_outputs):
master_key, key = random.split(master_key)
if random.uniform(key, shape=()) < 0.5:
master_key, key = random.split(master_key)
weight = float(random.normal(key, shape=()) * 0.5)
self.connection_genes.append(
ConnectionGene(node_id, n_inputs + j, weight=weight)
)
def mutate(self, config: Dict):
seed = int(time.time() * 1000) % (2**32 - 1)
key = random.PRNGKey(seed)
# Mutate connection weights
for conn in self.connection_genes:
key, subkey = random.split(key)
if random.uniform(subkey, shape=()) < config['weight_mutation_rate']:
key, subkey = random.split(key)
# Sometimes reset weight completely
if random.uniform(subkey, shape=()) < 0.1:
key, subkey = random.split(key)
conn.weight = float(random.normal(subkey, shape=()) * 0.5)
else:
# Otherwise adjust existing weight
key, subkey = random.split(key)
conn.weight += float(random.normal(subkey) * config['weight_mutation_power'])
# Mutate node biases
for node in self.node_genes.values():
key, subkey = random.split(key)
if random.uniform(subkey, shape=()) < 0.1: # 10% chance to mutate bias
key, subkey = random.split(key)
node.bias += float(random.normal(subkey) * 0.1)
# Add new node
key, subkey = random.split(key)
if random.uniform(subkey, shape=()) < config['add_node_rate']:
if self.connection_genes:
# Choose random connection to split
conn = np.random.choice(self.connection_genes)
new_id = max(self.node_genes.keys()) + 1
# Create new node with random bias
self.node_genes[new_id] = NodeGene(new_id, 'hidden')
# Create two new connections with some randomization
key, subkey = random.split(key)
weight1 = float(random.normal(subkey, shape=()) * 0.5)
key, subkey = random.split(key)
weight2 = float(random.normal(subkey, shape=()) * 0.5)
self.connection_genes.append(
ConnectionGene(conn.source, new_id, weight=weight1)
)
self.connection_genes.append(
ConnectionGene(new_id, conn.target, weight=weight2)
)
# Disable old connection
conn.enabled = False
# Add new connection
key, subkey = random.split(key)
if random.uniform(subkey, shape=()) < config['add_connection_rate']:
# Get all possible nodes
nodes = list(self.node_genes.keys())
for _ in range(10): # Try 10 times to find valid connection
source = np.random.choice(nodes)
target = np.random.choice(nodes)
# Ensure forward propagation (source id < target id)
if source < target:
# Check if connection already exists
if not any(c.source == source and c.target == target
for c in self.connection_genes):
key, subkey = random.split(key)
weight = float(random.normal(subkey, shape=()) * 0.5)
self.connection_genes.append(
ConnectionGene(source, target, weight=weight)
)
break
class Network:
def __init__(self, genome: Genome):
self.genome = genome
# Sort nodes by ID to ensure consistent ordering
self.input_nodes = sorted([n for n in genome.node_genes.values() if n.type == 'input'], key=lambda x: x.id)
self.hidden_nodes = sorted([n for n in genome.node_genes.values() if n.type == 'hidden'], key=lambda x: x.id)
self.output_nodes = sorted([n for n in genome.node_genes.values() if n.type == 'output'], key=lambda x: x.id)
# Verify we have exactly 3 output nodes
assert len(self.output_nodes) == 3, f"Expected 3 output nodes, got {len(self.output_nodes)}"
def forward(self, x: jnp.ndarray) -> jnp.ndarray:
# Ensure input is 2D with shape (batch_size, input_dim)
if len(x.shape) == 1:
x = jnp.expand_dims(x, 0)
batch_size = x.shape[0]
# Initialize node values
values = {}
for node in self.genome.node_genes.values():
values[node.id] = jnp.zeros((batch_size,))
values[node.id] = values[node.id] + node.bias
# Set input values
for i, node in enumerate(self.input_nodes):
values[node.id] = x[:, i]
# Process nodes in order
for node in self.hidden_nodes + self.output_nodes:
# Sum incoming connections
total = jnp.zeros((batch_size,))
total = total + node.bias
for conn in self.genome.connection_genes:
if conn.enabled and conn.target == node.id:
total = total + values[conn.source] * conn.weight
# Apply activation
values[node.id] = jnp.tanh(total)
# Get output values and ensure shape (batch_size, 3)
outputs = []
for node in self.output_nodes:
outputs.append(values[node.id])
# Stack along new axis to get (batch_size, 3)
return jnp.stack(outputs, axis=-1)
def evaluate_parallel(networks: List[Network], env: SlimeVolley, batch_size: int = 8) -> List[float]:
"""Evaluate multiple networks in parallel using JAX's vectorization."""
total_networks = len(networks)
fitness_scores = []
for i in range(0, total_networks, batch_size):
batch = networks[i:i + batch_size]
batch_size_actual = len(batch)
# Initialize environment states with proper key shape
seed = int(time.time() * 1000) % (2**32 - 1)
key = random.PRNGKey(seed)
states = env.reset(key)
total_rewards = np.zeros(batch_size_actual)
# Run episodes
for step in range(1000): # Max steps per episode
# Get observations and normalize
observations = states.obs / 10.0
# Get actions from all networks
actions = np.stack([
net.forward(obs[None, :])
for net, obs in zip(batch, observations)
])
# Convert to binary actions
thresholds = np.array([0.5, 0.5, 0.5])
binary_actions = (actions > thresholds).astype(np.float32)
# Step environment
key, subkey = random.split(key)
next_states, rewards, dones = env.step(states, binary_actions)
total_rewards += np.array([float(r) for r in rewards])
states = next_states
if np.all(dones):
break
fitness_scores.extend(list(total_rewards))
return fitness_scores
def create_next_generation(population: List[Network], fitness_scores: List[float], config: Dict):
"""Create the next generation of networks based on the current population and fitness scores."""
next_population = []
# Keep top 20% unchanged (less elitism = faster adaptation)
n_elite = max(2, int(0.2 * len(population)))
next_population.extend(population[:n_elite])
# Fill rest with mutated versions of top 50%
n_top = max(5, int(0.5 * len(population)))
while len(next_population) < len(population):
# Tournament selection with size 3 (smaller = faster)
tournament_size = 3
candidates = np.random.choice(population[:n_top], tournament_size, replace=False)
parent = max(candidates, key=lambda x: fitness_scores[population.index(x)])
child = Network(parent.genome)
child.genome.mutate(config)
next_population.append(child)
return next_population
def record_gameplay(network: Network, env: SlimeVolley, filename: str = 'gameplay.gif', max_steps: int = 1000):
"""Record a game played by the network and save it as a GIF."""
frames = []
# Initialize environment
seed = int(time.time() * 1000) % (2**32 - 1)
key = random.PRNGKey(seed)
state = env.reset(key)
done = False
steps = 0
while not done and steps < max_steps:
# Render current frame
frame = env.render(state)
frames.append(frame) # frame is already a PIL Image
# Get observation and normalize
obs = state.obs[None, :] / 10.0
# Get action from network
raw_action = network.forward(obs)
# Convert to binary actions
thresholds = jnp.array([0.5, 0.5, 0.5])
binary_action = (raw_action > thresholds).astype(jnp.float32)
# Prevent simultaneous left/right
both_active = jnp.logical_and(binary_action[:, 0] > 0, binary_action[:, 1] > 0)
prefer_left = raw_action[:, 0] > raw_action[:, 1]
binary_action = binary_action.at[:, 0].set(
jnp.where(both_active, prefer_left.astype(jnp.float32), binary_action[:, 0])
)
binary_action = binary_action.at[:, 1].set(
jnp.where(both_active, (~prefer_left).astype(jnp.float32), binary_action[:, 1])
)
# Step environment
key, subkey = random.split(key) # Get new key for each step
state, reward, done = env.step(state, binary_action) # Already batched
steps += 1
# Save as GIF
if frames:
frames[0].save(
filename,
save_all=True,
append_images=frames[1:],
duration=50, # 20 fps
loop=0
)
print(f"Gameplay recorded and saved to {filename}")
else:
print("No frames were recorded")
def main():
"""Main training loop with hardware acceleration when available."""
# Initialize environment
env = SlimeVolley(max_steps=1000)
# Configuration for evolution
config = {
'population_size': 64,
'batch_size': 8, # Smaller batch size for better compatibility
'weight_mutation_rate': 0.95,
'weight_mutation_power': 4.0,
'add_node_rate': 0.0,
'add_connection_rate': 0.0,
}
print("\nTraining Configuration:")
print(f"Population Size: {config['population_size']}")
print(f"Batch Size: {config['batch_size']}")
print(f"Mutation Rate: {config['weight_mutation_rate']}")
print("-" * 40)
# Create initial population
population = [
Network(Genome(n_inputs=12, n_outputs=3))
for _ in range(config['population_size'])
]
best_fitness = float('-inf')
best_network = None
# Evolution loop
for generation in range(1000):
start_time = time.time()
print(f"\nGeneration {generation}")
# Evaluate population in batches
fitness_scores = evaluate_parallel(
population,
env,
batch_size=config['batch_size']
)
# Track best network
max_fitness = max(fitness_scores)
if max_fitness > best_fitness:
best_idx = fitness_scores.index(max_fitness)
best_fitness = max_fitness
best_network = population[best_idx]
print(f"New best fitness: {best_fitness:.2f}")
# Record gameplay for significant improvements
if max_fitness > best_fitness + 2.0:
record_gameplay(best_network, env, f"best_gen_{generation}.gif")
# Early stopping
if best_fitness > 8.0:
print(f"Target fitness reached: {best_fitness:.2f}")
break
# Create next generation
population = create_next_generation(
population,
fitness_scores,
config
)
# Print stats every 5 generations
if generation % 5 == 0:
gen_time = time.time() - start_time
print(f"\nGeneration {generation} Stats:")
print(f"Best Fitness: {max_fitness:.2f}")
print(f"Average Fitness: {np.mean(fitness_scores):.2f}")
print(f"Generation Time: {gen_time:.2f}s")
print("\nTraining complete!")
print(f"Best fitness achieved: {best_fitness:.2f}")
# Save final network
if best_network:
record_gameplay(best_network, env, "final_gameplay.gif")
if __name__ == '__main__':
main() |