File size: 17,110 Bytes
ecccd48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
"""Train NEAT networks to play volleyball using hardware acceleration when available."""

import jax
import jax.numpy as jnp
from jax import random
from evojax.task.slimevolley import SlimeVolley
from typing import List, Tuple, Dict
import numpy as np
import time
from PIL import Image
import io
import os

# Try to initialize JAX with GPU
try:
    # Configure JAX to use GPU
    os.environ['CUDA_VISIBLE_DEVICES'] = '0'
    os.environ['XLA_PYTHON_CLIENT_PREALLOCATE'] = 'false'
    os.environ['XLA_PYTHON_CLIENT_ALLOCATOR'] = 'platform'
    
    # Check available devices
    print(f"JAX devices available: {jax.devices()}")
    print(f"Using device: {jax.devices()[0].platform.upper()}")
except Exception as e:
    print(f"Note: Using CPU - {str(e)}")

class NodeGene:
    """A gene representing a node in the neural network."""
    def __init__(self, id: int, node_type: str, activation: str = 'tanh'):
        self.id = id
        self.type = node_type  # 'input', 'hidden', or 'output'
        self.activation = activation
        
        # Use deterministic key generation
        seed = abs(hash(f"node_{id}")) % (2**32 - 1)  # Ensure positive seed
        key = random.PRNGKey(seed)
        self.bias = float(random.normal(key, shape=()) * 0.1)

class ConnectionGene:
    """A gene representing a connection between nodes."""
    def __init__(self, source: int, target: int, weight: float = None, enabled: bool = True):
        self.source = source
        self.target = target
        self.enabled = enabled
        self.innovation = hash((source, target))
        
        if weight is None:
            # Use deterministic key generation
            seed = abs(hash(f"conn_{source}_{target}")) % (2**32 - 1)
            key = random.PRNGKey(seed)
            weight = float(random.normal(key, shape=()) * 0.1)
        self.weight = weight

class Genome:
    def __init__(self, n_inputs: int, n_outputs: int):
        # Create input nodes (0 to n_inputs-1)
        self.node_genes = {i: NodeGene(i, 'input') for i in range(n_inputs)}
        
        # Create exactly 3 output nodes for left, right, jump
        n_outputs = 3  # Force exactly 3 outputs
        for i in range(n_outputs):
            self.node_genes[n_inputs + i] = NodeGene(n_inputs + i, 'output')
        
        self.connection_genes: List[ConnectionGene] = []
        
        # Initialize with randomized connections using unique keys
        seed = int(time.time() * 1000) % (2**32 - 1)
        master_key = random.PRNGKey(seed)
        
        # Add direct connections with random weights
        for i in range(n_inputs):
            for j in range(n_outputs):
                master_key, key = random.split(master_key)
                if random.uniform(key, shape=()) < 0.7:  # 70% chance of connection
                    master_key, key = random.split(master_key)
                    weight = float(random.normal(key, shape=()) * 0.5)  # Larger initial weights
                    self.connection_genes.append(
                        ConnectionGene(i, n_inputs + j, weight=weight)
                    )
        
        # Add hidden nodes with random connections
        master_key, key = random.split(master_key)
        n_hidden = int(random.randint(key, (), 1, 4))  # Random number of hidden nodes
        hidden_start = n_inputs + n_outputs
        
        for i in range(n_hidden):
            node_id = hidden_start + i
            self.node_genes[node_id] = NodeGene(node_id, 'hidden')
            
            # Connect random inputs to this hidden node
            for j in range(n_inputs):
                master_key, key = random.split(master_key)
                if random.uniform(key, shape=()) < 0.5:
                    master_key, key = random.split(master_key)
                    weight = float(random.normal(key, shape=()) * 0.5)
                    self.connection_genes.append(
                        ConnectionGene(j, node_id, weight=weight)
                    )
            
            # Connect this hidden node to random outputs
            for j in range(n_outputs):
                master_key, key = random.split(master_key)
                if random.uniform(key, shape=()) < 0.5:
                    master_key, key = random.split(master_key)
                    weight = float(random.normal(key, shape=()) * 0.5)
                    self.connection_genes.append(
                        ConnectionGene(node_id, n_inputs + j, weight=weight)
                    )

    def mutate(self, config: Dict):
        seed = int(time.time() * 1000) % (2**32 - 1)
        key = random.PRNGKey(seed)
        
        # Mutate connection weights
        for conn in self.connection_genes:
            key, subkey = random.split(key)
            if random.uniform(subkey, shape=()) < config['weight_mutation_rate']:
                key, subkey = random.split(key)
                # Sometimes reset weight completely
                if random.uniform(subkey, shape=()) < 0.1:
                    key, subkey = random.split(key)
                    conn.weight = float(random.normal(subkey, shape=()) * 0.5)
                else:
                    # Otherwise adjust existing weight
                    key, subkey = random.split(key)
                    conn.weight += float(random.normal(subkey) * config['weight_mutation_power'])
        
        # Mutate node biases
        for node in self.node_genes.values():
            key, subkey = random.split(key)
            if random.uniform(subkey, shape=()) < 0.1:  # 10% chance to mutate bias
                key, subkey = random.split(key)
                node.bias += float(random.normal(subkey) * 0.1)
        
        # Add new node
        key, subkey = random.split(key)
        if random.uniform(subkey, shape=()) < config['add_node_rate']:
            if self.connection_genes:
                # Choose random connection to split
                conn = np.random.choice(self.connection_genes)
                new_id = max(self.node_genes.keys()) + 1
                
                # Create new node with random bias
                self.node_genes[new_id] = NodeGene(new_id, 'hidden')
                
                # Create two new connections with some randomization
                key, subkey = random.split(key)
                weight1 = float(random.normal(subkey, shape=()) * 0.5)
                key, subkey = random.split(key)
                weight2 = float(random.normal(subkey, shape=()) * 0.5)
                
                self.connection_genes.append(
                    ConnectionGene(conn.source, new_id, weight=weight1)
                )
                self.connection_genes.append(
                    ConnectionGene(new_id, conn.target, weight=weight2)
                )
                
                # Disable old connection
                conn.enabled = False

        # Add new connection
        key, subkey = random.split(key)
        if random.uniform(subkey, shape=()) < config['add_connection_rate']:
            # Get all possible nodes
            nodes = list(self.node_genes.keys())
            for _ in range(10):  # Try 10 times to find valid connection
                source = np.random.choice(nodes)
                target = np.random.choice(nodes)
                
                # Ensure forward propagation (source id < target id)
                if source < target:
                    # Check if connection already exists
                    if not any(c.source == source and c.target == target 
                             for c in self.connection_genes):
                        key, subkey = random.split(key)
                        weight = float(random.normal(subkey, shape=()) * 0.5)
                        self.connection_genes.append(
                            ConnectionGene(source, target, weight=weight)
                        )
                        break

class Network:
    def __init__(self, genome: Genome):
        self.genome = genome
        # Sort nodes by ID to ensure consistent ordering
        self.input_nodes = sorted([n for n in genome.node_genes.values() if n.type == 'input'], key=lambda x: x.id)
        self.hidden_nodes = sorted([n for n in genome.node_genes.values() if n.type == 'hidden'], key=lambda x: x.id)
        self.output_nodes = sorted([n for n in genome.node_genes.values() if n.type == 'output'], key=lambda x: x.id)
        
        # Verify we have exactly 3 output nodes
        assert len(self.output_nodes) == 3, f"Expected 3 output nodes, got {len(self.output_nodes)}"
        
    def forward(self, x: jnp.ndarray) -> jnp.ndarray:
        # Ensure input is 2D with shape (batch_size, input_dim)
        if len(x.shape) == 1:
            x = jnp.expand_dims(x, 0)
        
        batch_size = x.shape[0]
        
        # Initialize node values
        values = {}
        for node in self.genome.node_genes.values():
            values[node.id] = jnp.zeros((batch_size,))
            values[node.id] = values[node.id] + node.bias
        
        # Set input values
        for i, node in enumerate(self.input_nodes):
            values[node.id] = x[:, i]
        
        # Process nodes in order
        for node in self.hidden_nodes + self.output_nodes:
            # Sum incoming connections
            total = jnp.zeros((batch_size,))
            total = total + node.bias
            
            for conn in self.genome.connection_genes:
                if conn.enabled and conn.target == node.id:
                    total = total + values[conn.source] * conn.weight
            
            # Apply activation
            values[node.id] = jnp.tanh(total)
        
        # Get output values and ensure shape (batch_size, 3)
        outputs = []
        for node in self.output_nodes:
            outputs.append(values[node.id])
        
        # Stack along new axis to get (batch_size, 3)
        return jnp.stack(outputs, axis=-1)

def evaluate_parallel(networks: List[Network], env: SlimeVolley, batch_size: int = 8) -> List[float]:
    """Evaluate multiple networks in parallel using JAX's vectorization."""
    total_networks = len(networks)
    fitness_scores = []
    
    for i in range(0, total_networks, batch_size):
        batch = networks[i:i + batch_size]
        batch_size_actual = len(batch)
        
        # Initialize environment states with proper key shape
        seed = int(time.time() * 1000) % (2**32 - 1)
        key = random.PRNGKey(seed)
        states = env.reset(key)
        total_rewards = np.zeros(batch_size_actual)
        
        # Run episodes
        for step in range(1000):  # Max steps per episode
            # Get observations and normalize
            observations = states.obs / 10.0
            
            # Get actions from all networks
            actions = np.stack([
                net.forward(obs[None, :]) 
                for net, obs in zip(batch, observations)
            ])
            
            # Convert to binary actions
            thresholds = np.array([0.5, 0.5, 0.5])
            binary_actions = (actions > thresholds).astype(np.float32)
            
            # Step environment
            key, subkey = random.split(key)
            next_states, rewards, dones = env.step(states, binary_actions)
            total_rewards += np.array([float(r) for r in rewards])
            states = next_states
            
            if np.all(dones):
                break
        
        fitness_scores.extend(list(total_rewards))
    
    return fitness_scores

def create_next_generation(population: List[Network], fitness_scores: List[float], config: Dict):
    """Create the next generation of networks based on the current population and fitness scores."""
    next_population = []
    
    # Keep top 20% unchanged (less elitism = faster adaptation)
    n_elite = max(2, int(0.2 * len(population)))
    next_population.extend(population[:n_elite])
    
    # Fill rest with mutated versions of top 50%
    n_top = max(5, int(0.5 * len(population)))
    while len(next_population) < len(population):
        # Tournament selection with size 3 (smaller = faster)
        tournament_size = 3
        candidates = np.random.choice(population[:n_top], tournament_size, replace=False)
        parent = max(candidates, key=lambda x: fitness_scores[population.index(x)])
        
        child = Network(parent.genome)
        child.genome.mutate(config)
        next_population.append(child)
    
    return next_population

def record_gameplay(network: Network, env: SlimeVolley, filename: str = 'gameplay.gif', max_steps: int = 1000):
    """Record a game played by the network and save it as a GIF."""
    frames = []
    
    # Initialize environment
    seed = int(time.time() * 1000) % (2**32 - 1)
    key = random.PRNGKey(seed)
    state = env.reset(key)
    done = False
    steps = 0
    
    while not done and steps < max_steps:
        # Render current frame
        frame = env.render(state)
        frames.append(frame)  # frame is already a PIL Image
        
        # Get observation and normalize
        obs = state.obs[None, :] / 10.0
        
        # Get action from network
        raw_action = network.forward(obs)
        
        # Convert to binary actions
        thresholds = jnp.array([0.5, 0.5, 0.5])
        binary_action = (raw_action > thresholds).astype(jnp.float32)
        
        # Prevent simultaneous left/right
        both_active = jnp.logical_and(binary_action[:, 0] > 0, binary_action[:, 1] > 0)
        prefer_left = raw_action[:, 0] > raw_action[:, 1]
        
        binary_action = binary_action.at[:, 0].set(
            jnp.where(both_active, prefer_left.astype(jnp.float32), binary_action[:, 0])
        )
        binary_action = binary_action.at[:, 1].set(
            jnp.where(both_active, (~prefer_left).astype(jnp.float32), binary_action[:, 1])
        )
        
        # Step environment
        key, subkey = random.split(key)  # Get new key for each step
        state, reward, done = env.step(state, binary_action)  # Already batched
        steps += 1
    
    # Save as GIF
    if frames:
        frames[0].save(
            filename,
            save_all=True,
            append_images=frames[1:],
            duration=50,  # 20 fps
            loop=0
        )
        print(f"Gameplay recorded and saved to {filename}")
    else:
        print("No frames were recorded")

def main():
    """Main training loop with hardware acceleration when available."""
    # Initialize environment
    env = SlimeVolley(max_steps=1000)
    
    # Configuration for evolution
    config = {
        'population_size': 64,
        'batch_size': 8,  # Smaller batch size for better compatibility
        'weight_mutation_rate': 0.95,
        'weight_mutation_power': 4.0,
        'add_node_rate': 0.0,
        'add_connection_rate': 0.0,
    }
    
    print("\nTraining Configuration:")
    print(f"Population Size: {config['population_size']}")
    print(f"Batch Size: {config['batch_size']}")
    print(f"Mutation Rate: {config['weight_mutation_rate']}")
    print("-" * 40)
    
    # Create initial population
    population = [
        Network(Genome(n_inputs=12, n_outputs=3))
        for _ in range(config['population_size'])
    ]
    
    best_fitness = float('-inf')
    best_network = None
    
    # Evolution loop
    for generation in range(1000):
        start_time = time.time()
        print(f"\nGeneration {generation}")
        
        # Evaluate population in batches
        fitness_scores = evaluate_parallel(
            population, 
            env, 
            batch_size=config['batch_size']
        )
        
        # Track best network
        max_fitness = max(fitness_scores)
        if max_fitness > best_fitness:
            best_idx = fitness_scores.index(max_fitness)
            best_fitness = max_fitness
            best_network = population[best_idx]
            print(f"New best fitness: {best_fitness:.2f}")
            
            # Record gameplay for significant improvements
            if max_fitness > best_fitness + 2.0:
                record_gameplay(best_network, env, f"best_gen_{generation}.gif")
        
        # Early stopping
        if best_fitness > 8.0:
            print(f"Target fitness reached: {best_fitness:.2f}")
            break
        
        # Create next generation
        population = create_next_generation(
            population, 
            fitness_scores, 
            config
        )
        
        # Print stats every 5 generations
        if generation % 5 == 0:
            gen_time = time.time() - start_time
            print(f"\nGeneration {generation} Stats:")
            print(f"Best Fitness: {max_fitness:.2f}")
            print(f"Average Fitness: {np.mean(fitness_scores):.2f}")
            print(f"Generation Time: {gen_time:.2f}s")
    
    print("\nTraining complete!")
    print(f"Best fitness achieved: {best_fitness:.2f}")
    
    # Save final network
    if best_network:
        record_gameplay(best_network, env, "final_gameplay.gif")

if __name__ == '__main__':
    main()