Upload neat\genome.py with huggingface_hub
Browse files- neat//genome.py +454 -0
neat//genome.py
ADDED
@@ -0,0 +1,454 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""NEAT Genome implementation.
|
2 |
+
|
3 |
+
This module implements the core NEAT genome structure and operations.
|
4 |
+
Each genome represents a neural network with nodes (neurons) and connections (synapses).
|
5 |
+
The genome can be mutated to evolve the network structure and weights over time.
|
6 |
+
"""
|
7 |
+
|
8 |
+
from dataclasses import dataclass
|
9 |
+
import jax.numpy as jnp
|
10 |
+
import jax.random as jrandom
|
11 |
+
from typing import Dict, List, Tuple, Optional
|
12 |
+
import time
|
13 |
+
import random
|
14 |
+
import numpy as np
|
15 |
+
|
16 |
+
@dataclass
|
17 |
+
class NodeGene:
|
18 |
+
"""Node gene containing activation function and type.
|
19 |
+
|
20 |
+
Attributes:
|
21 |
+
node_id: Unique identifier for this node
|
22 |
+
node_type: Type of node ('input', 'hidden', 'recurrent', or 'output')
|
23 |
+
activation: Activation function ('tanh', 'relu', 'sigmoid', or 'linear')
|
24 |
+
"""
|
25 |
+
node_id: int
|
26 |
+
node_type: str # 'input', 'hidden', 'recurrent', or 'output'
|
27 |
+
activation: str # 'tanh', 'relu', 'sigmoid', or 'linear'
|
28 |
+
|
29 |
+
@dataclass
|
30 |
+
class ConnectionGene:
|
31 |
+
"""Connection gene containing connection properties.
|
32 |
+
|
33 |
+
Attributes:
|
34 |
+
source: ID of source node
|
35 |
+
target: ID of target node
|
36 |
+
weight: Connection weight
|
37 |
+
enabled: Whether connection is enabled
|
38 |
+
innovation: Unique innovation number for this connection
|
39 |
+
"""
|
40 |
+
source: int
|
41 |
+
target: int
|
42 |
+
weight: float
|
43 |
+
enabled: bool = True
|
44 |
+
innovation: int = 0
|
45 |
+
|
46 |
+
class Genome:
|
47 |
+
"""NEAT Genome implementation.
|
48 |
+
|
49 |
+
A genome represents a neural network as a collection of node and connection genes.
|
50 |
+
The network topology can be modified through mutation operations.
|
51 |
+
|
52 |
+
Attributes:
|
53 |
+
input_size: Number of input nodes
|
54 |
+
output_size: Number of output nodes
|
55 |
+
node_genes: Dictionary mapping node IDs to NodeGene objects
|
56 |
+
connection_genes: List of ConnectionGene objects
|
57 |
+
key: Random key for reproducible randomness
|
58 |
+
innovation_number: Counter for assigning unique innovation numbers
|
59 |
+
"""
|
60 |
+
|
61 |
+
def __init__(self, input_size: int, output_size: int):
|
62 |
+
"""Initialize genome with specified number of inputs and outputs.
|
63 |
+
|
64 |
+
Args:
|
65 |
+
input_size: Number of input nodes
|
66 |
+
output_size: Number of output nodes (must be 3 for volleyball)
|
67 |
+
"""
|
68 |
+
self.input_size = input_size
|
69 |
+
self.output_size = output_size
|
70 |
+
self.node_genes: Dict[int, NodeGene] = {}
|
71 |
+
self.connection_genes: List[ConnectionGene] = []
|
72 |
+
|
73 |
+
# Initialize random key
|
74 |
+
timestamp = int(time.time() * 1000)
|
75 |
+
self.key = jrandom.PRNGKey(hash((input_size, output_size, timestamp)) % (2**32))
|
76 |
+
|
77 |
+
# Counter for assigning unique innovation numbers
|
78 |
+
self.innovation_number = 0
|
79 |
+
|
80 |
+
# Initialize minimal network structure
|
81 |
+
self._init_minimal()
|
82 |
+
|
83 |
+
def _init_minimal(self):
|
84 |
+
"""Initialize minimal feed-forward network structure.
|
85 |
+
|
86 |
+
Network structure:
|
87 |
+
- Input nodes [0-7]: Game state inputs
|
88 |
+
- Hidden layer 1 [8-15]: First processing layer (8 nodes)
|
89 |
+
- Hidden layer 2 [16-23]: Second processing layer (8 nodes)
|
90 |
+
- Output nodes [24-26]: Action outputs (left, right, jump)
|
91 |
+
|
92 |
+
Using larger initial weights for faster learning:
|
93 |
+
- Input->Hidden1: N(0, 2.0) for strong initial responses
|
94 |
+
- Hidden1->Hidden2: N(0, 2.0) for feature processing
|
95 |
+
- Hidden2->Output: N(0, 4.0) for decisive actions
|
96 |
+
"""
|
97 |
+
# Create input nodes (0-7)
|
98 |
+
for i in range(8): # Only 8 inputs used
|
99 |
+
self.node_genes[i] = NodeGene(
|
100 |
+
node_id=i,
|
101 |
+
node_type='input',
|
102 |
+
activation='linear' # Input nodes are always linear
|
103 |
+
)
|
104 |
+
|
105 |
+
# Create first hidden layer (8-15)
|
106 |
+
hidden1_size = 8
|
107 |
+
hidden1_start = 8 # Right after inputs
|
108 |
+
for i in range(hidden1_size):
|
109 |
+
node_id = hidden1_start + i
|
110 |
+
self.node_genes[node_id] = NodeGene(
|
111 |
+
node_id=node_id,
|
112 |
+
node_type='hidden',
|
113 |
+
activation='relu' # ReLU for faster learning
|
114 |
+
)
|
115 |
+
|
116 |
+
# Connect all inputs to this hidden node
|
117 |
+
for input_id in range(8):
|
118 |
+
weight = float(jrandom.normal(self.key) * 2.0)
|
119 |
+
self.connection_genes.append(ConnectionGene(
|
120 |
+
source=input_id,
|
121 |
+
target=node_id,
|
122 |
+
weight=weight,
|
123 |
+
enabled=True,
|
124 |
+
innovation=self.innovation_number
|
125 |
+
))
|
126 |
+
self.innovation_number += 1
|
127 |
+
|
128 |
+
# Create second hidden layer (16-23)
|
129 |
+
hidden2_size = 8
|
130 |
+
hidden2_start = hidden1_start + hidden1_size
|
131 |
+
for i in range(hidden2_size):
|
132 |
+
node_id = hidden2_start + i
|
133 |
+
self.node_genes[node_id] = NodeGene(
|
134 |
+
node_id=node_id,
|
135 |
+
node_type='hidden',
|
136 |
+
activation='relu' # ReLU for faster learning
|
137 |
+
)
|
138 |
+
|
139 |
+
# Connect all hidden1 nodes to this hidden2 node
|
140 |
+
for h1_id in range(hidden1_start, hidden1_start + hidden1_size):
|
141 |
+
weight = float(jrandom.normal(self.key) * 2.0)
|
142 |
+
self.connection_genes.append(ConnectionGene(
|
143 |
+
source=h1_id,
|
144 |
+
target=node_id,
|
145 |
+
weight=weight,
|
146 |
+
enabled=True,
|
147 |
+
innovation=self.innovation_number
|
148 |
+
))
|
149 |
+
self.innovation_number += 1
|
150 |
+
|
151 |
+
# Create output nodes (24-26)
|
152 |
+
output_start = hidden2_start + hidden2_size
|
153 |
+
for i in range(self.output_size):
|
154 |
+
node_id = output_start + i
|
155 |
+
self.node_genes[node_id] = NodeGene(
|
156 |
+
node_id=node_id,
|
157 |
+
node_type='output',
|
158 |
+
activation='tanh' # tanh for [-1,1] outputs
|
159 |
+
)
|
160 |
+
|
161 |
+
# Connect all hidden2 nodes to this output
|
162 |
+
for h2_id in range(hidden2_start, hidden2_start + hidden2_size):
|
163 |
+
weight = float(jrandom.normal(self.key) * 4.0) # Larger weights for outputs
|
164 |
+
self.connection_genes.append(ConnectionGene(
|
165 |
+
source=h2_id,
|
166 |
+
target=node_id,
|
167 |
+
weight=weight,
|
168 |
+
enabled=True,
|
169 |
+
innovation=self.innovation_number
|
170 |
+
))
|
171 |
+
self.innovation_number += 1
|
172 |
+
|
173 |
+
def mutate(self, config: Dict):
|
174 |
+
"""Mutate the genome by modifying weights and network structure.
|
175 |
+
|
176 |
+
Args:
|
177 |
+
config: Dictionary containing mutation parameters:
|
178 |
+
- weight_mutation_rate: Probability of mutating each weight
|
179 |
+
- weight_mutation_power: Standard deviation for weight mutations
|
180 |
+
- add_node_rate: Probability of adding a new node
|
181 |
+
- add_connection_rate: Probability of adding a new connection
|
182 |
+
"""
|
183 |
+
# Mutate connection weights
|
184 |
+
for conn in self.connection_genes:
|
185 |
+
if jrandom.uniform(self.key) < config['weight_mutation_rate']:
|
186 |
+
# Get new random key
|
187 |
+
self.key, subkey = jrandom.split(self.key)
|
188 |
+
# Add random value from normal distribution
|
189 |
+
conn.weight += float(jrandom.normal(subkey) * config['weight_mutation_power'])
|
190 |
+
|
191 |
+
# Add new nodes (disabled for now since we're using fixed topology)
|
192 |
+
if config['add_node_rate'] > 0:
|
193 |
+
if jrandom.uniform(self.key) < config['add_node_rate']:
|
194 |
+
self._add_node()
|
195 |
+
|
196 |
+
# Add new connections (disabled for now)
|
197 |
+
if config['add_connection_rate'] > 0:
|
198 |
+
if jrandom.uniform(self.key) < config['add_connection_rate']:
|
199 |
+
self._add_connection()
|
200 |
+
|
201 |
+
def _add_node(self):
|
202 |
+
"""Add a new node by splitting an existing connection."""
|
203 |
+
if not self.connection_genes:
|
204 |
+
return
|
205 |
+
|
206 |
+
# Choose a random connection to split
|
207 |
+
conn_to_split = np.random.choice(self.connection_genes)
|
208 |
+
conn_to_split.enabled = False
|
209 |
+
|
210 |
+
# Create new node
|
211 |
+
new_node_id = max(self.node_genes.keys()) + 1
|
212 |
+
self.node_genes[new_node_id] = NodeGene(
|
213 |
+
node_id=new_node_id,
|
214 |
+
node_type='hidden',
|
215 |
+
activation='relu'
|
216 |
+
)
|
217 |
+
|
218 |
+
# Create two new connections
|
219 |
+
self.connection_genes.extend([
|
220 |
+
ConnectionGene(
|
221 |
+
source=conn_to_split.source,
|
222 |
+
target=new_node_id,
|
223 |
+
weight=1.0,
|
224 |
+
enabled=True,
|
225 |
+
innovation=self.innovation_number
|
226 |
+
),
|
227 |
+
ConnectionGene(
|
228 |
+
source=new_node_id,
|
229 |
+
target=conn_to_split.target,
|
230 |
+
weight=conn_to_split.weight,
|
231 |
+
enabled=True,
|
232 |
+
innovation=self.innovation_number + 1
|
233 |
+
)
|
234 |
+
])
|
235 |
+
self.innovation_number += 2
|
236 |
+
|
237 |
+
def _add_connection(self):
|
238 |
+
"""Add a new connection between two unconnected nodes."""
|
239 |
+
# Get list of all possible connections
|
240 |
+
existing_connections = {(c.source, c.target) for c in self.connection_genes}
|
241 |
+
possible_connections = []
|
242 |
+
|
243 |
+
for source in self.node_genes:
|
244 |
+
for target in self.node_genes:
|
245 |
+
# Skip if connection already exists
|
246 |
+
if (source, target) in existing_connections:
|
247 |
+
continue
|
248 |
+
|
249 |
+
# Skip if would create cycle (except recurrent)
|
250 |
+
if self.node_genes[source].node_type != 'recurrent' and \
|
251 |
+
self.would_create_cycle(source, target):
|
252 |
+
continue
|
253 |
+
|
254 |
+
possible_connections.append((source, target))
|
255 |
+
|
256 |
+
if possible_connections:
|
257 |
+
# Choose random connection
|
258 |
+
source, target = random.choice(possible_connections)
|
259 |
+
|
260 |
+
# Create new connection
|
261 |
+
weight = float(jrandom.normal(self.key) * 1.0)
|
262 |
+
self.connection_genes.append(ConnectionGene(
|
263 |
+
source=source,
|
264 |
+
target=target,
|
265 |
+
weight=weight,
|
266 |
+
enabled=True,
|
267 |
+
innovation=self.innovation_number
|
268 |
+
))
|
269 |
+
self.innovation_number += 1
|
270 |
+
|
271 |
+
def would_create_cycle(self, source: int, target: int) -> bool:
|
272 |
+
"""Check if adding connection would create cycle in network.
|
273 |
+
|
274 |
+
Args:
|
275 |
+
source: Source node ID
|
276 |
+
target: Target node ID
|
277 |
+
|
278 |
+
Returns:
|
279 |
+
True if connection would create cycle, False otherwise
|
280 |
+
"""
|
281 |
+
# Skip cycle detection for recurrent connections
|
282 |
+
if self.node_genes[source].node_type == 'recurrent' or \
|
283 |
+
self.node_genes[target].node_type == 'recurrent':
|
284 |
+
return False
|
285 |
+
|
286 |
+
# Do depth-first search from target to see if we can reach source
|
287 |
+
visited = set()
|
288 |
+
|
289 |
+
def dfs(node: int) -> bool:
|
290 |
+
if node == source:
|
291 |
+
return True
|
292 |
+
if node in visited:
|
293 |
+
return False
|
294 |
+
|
295 |
+
visited.add(node)
|
296 |
+
for conn in self.connection_genes:
|
297 |
+
if conn.source == node and conn.enabled:
|
298 |
+
if dfs(conn.target):
|
299 |
+
return True
|
300 |
+
return False
|
301 |
+
|
302 |
+
return dfs(target)
|
303 |
+
|
304 |
+
def add_node_between(self, source: int, target: int):
|
305 |
+
"""Add a new node between two nodes, splitting an existing connection.
|
306 |
+
|
307 |
+
Args:
|
308 |
+
source: Source node ID
|
309 |
+
target: Target node ID
|
310 |
+
"""
|
311 |
+
# Find and disable the existing connection
|
312 |
+
for conn in self.connection_genes:
|
313 |
+
if conn.source == source and conn.target == target and conn.enabled:
|
314 |
+
conn.enabled = False
|
315 |
+
|
316 |
+
# Create new node
|
317 |
+
new_id = max(self.node_genes.keys()) + 1
|
318 |
+
self.node_genes[new_id] = NodeGene(
|
319 |
+
node_id=new_id,
|
320 |
+
node_type='hidden',
|
321 |
+
activation='relu'
|
322 |
+
)
|
323 |
+
|
324 |
+
# Create two new connections
|
325 |
+
self.connection_genes.extend([
|
326 |
+
ConnectionGene(
|
327 |
+
source=source,
|
328 |
+
target=new_id,
|
329 |
+
weight=1.0,
|
330 |
+
enabled=True,
|
331 |
+
innovation=self.innovation_number
|
332 |
+
),
|
333 |
+
ConnectionGene(
|
334 |
+
source=new_id,
|
335 |
+
target=target,
|
336 |
+
weight=conn.weight,
|
337 |
+
enabled=True,
|
338 |
+
innovation=self.innovation_number + 1
|
339 |
+
)
|
340 |
+
])
|
341 |
+
self.innovation_number += 2
|
342 |
+
break
|
343 |
+
|
344 |
+
def add_connection(self, source: int, target: int, weight: Optional[float] = None) -> bool:
|
345 |
+
"""Add a new connection between two nodes.
|
346 |
+
|
347 |
+
Args:
|
348 |
+
source: Source node ID
|
349 |
+
target: Target node ID
|
350 |
+
weight: Optional connection weight. If None, a random weight is generated.
|
351 |
+
|
352 |
+
Returns:
|
353 |
+
True if connection was added, False if invalid or already exists
|
354 |
+
"""
|
355 |
+
# Check if connection already exists
|
356 |
+
if any(c.source == source and c.target == target for c in self.connection_genes):
|
357 |
+
return False
|
358 |
+
|
359 |
+
# Validate nodes exist
|
360 |
+
if source not in self.node_genes or target not in self.node_genes:
|
361 |
+
return False
|
362 |
+
|
363 |
+
# Ensure feed-forward (no cycles)
|
364 |
+
if source >= target: # Simple way to ensure feed-forward
|
365 |
+
return False
|
366 |
+
|
367 |
+
# Generate random weight if not provided
|
368 |
+
if weight is None:
|
369 |
+
weight = float(jrandom.normal(self.key) * 1.0)
|
370 |
+
|
371 |
+
# Add new connection
|
372 |
+
self.connection_genes.append(ConnectionGene(
|
373 |
+
source=source,
|
374 |
+
target=target,
|
375 |
+
weight=weight,
|
376 |
+
enabled=True,
|
377 |
+
innovation=self.innovation_number
|
378 |
+
))
|
379 |
+
self.innovation_number += 1
|
380 |
+
return True
|
381 |
+
|
382 |
+
def crossover(self, other: 'Genome', key: jnp.ndarray) -> 'Genome':
|
383 |
+
"""Perform crossover between two genomes.
|
384 |
+
|
385 |
+
Args:
|
386 |
+
other: Other parent genome
|
387 |
+
key: JAX PRNG key
|
388 |
+
|
389 |
+
Returns:
|
390 |
+
Child genome
|
391 |
+
"""
|
392 |
+
# Create child genome
|
393 |
+
child = Genome(self.input_size, self.output_size)
|
394 |
+
|
395 |
+
# Inherit node genes
|
396 |
+
for node_id in self.node_genes:
|
397 |
+
if node_id in other.node_genes:
|
398 |
+
# Inherit randomly from either parent
|
399 |
+
if jrandom.uniform(key) < 0.5:
|
400 |
+
child.node_genes[node_id] = self.node_genes[node_id]
|
401 |
+
else:
|
402 |
+
child.node_genes[node_id] = other.node_genes[node_id]
|
403 |
+
else:
|
404 |
+
# Inherit from fitter parent
|
405 |
+
child.node_genes[node_id] = self.node_genes[node_id]
|
406 |
+
|
407 |
+
# Inherit connection genes
|
408 |
+
for conn in self.connection_genes:
|
409 |
+
if conn.innovation in [c.innovation for c in other.connection_genes]:
|
410 |
+
# Inherit randomly from either parent
|
411 |
+
other_conn = next(c for c in other.connection_genes if c.innovation == conn.innovation)
|
412 |
+
if jrandom.uniform(key) < 0.5:
|
413 |
+
child.connection_genes.append(ConnectionGene(
|
414 |
+
source=conn.source,
|
415 |
+
target=conn.target,
|
416 |
+
weight=conn.weight,
|
417 |
+
enabled=conn.enabled,
|
418 |
+
innovation=conn.innovation
|
419 |
+
))
|
420 |
+
else:
|
421 |
+
child.connection_genes.append(ConnectionGene(
|
422 |
+
source=other_conn.source,
|
423 |
+
target=other_conn.target,
|
424 |
+
weight=other_conn.weight,
|
425 |
+
enabled=other_conn.enabled,
|
426 |
+
innovation=other_conn.innovation
|
427 |
+
))
|
428 |
+
else:
|
429 |
+
# Inherit from fitter parent
|
430 |
+
child.connection_genes.append(ConnectionGene(
|
431 |
+
source=conn.source,
|
432 |
+
target=conn.target,
|
433 |
+
weight=conn.weight,
|
434 |
+
enabled=conn.enabled,
|
435 |
+
innovation=conn.innovation
|
436 |
+
))
|
437 |
+
|
438 |
+
return child
|
439 |
+
|
440 |
+
def clone(self) -> 'Genome':
|
441 |
+
"""Create a copy of this genome.
|
442 |
+
|
443 |
+
Returns:
|
444 |
+
Copy of genome
|
445 |
+
"""
|
446 |
+
clone = Genome(self.input_size, self.output_size)
|
447 |
+
clone.node_genes = self.node_genes.copy()
|
448 |
+
clone.connection_genes = [ConnectionGene(**conn.__dict__) for conn in self.connection_genes]
|
449 |
+
return clone
|
450 |
+
|
451 |
+
@property
|
452 |
+
def n_nodes(self) -> int:
|
453 |
+
"""Get total number of nodes in the genome."""
|
454 |
+
return len(self.node_genes)
|