eyaler nupurkmr9 commited on
Commit
3d8cfe9
·
0 Parent(s):

Duplicate from nupurkmr9/custom-diffusion

Browse files

Co-authored-by: Nupur Kumari <[email protected]>

.gitattributes ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tflite filter=lfs diff=lfs merge=lfs -text
29
+ *.tgz filter=lfs diff=lfs merge=lfs -text
30
+ *.wasm filter=lfs diff=lfs merge=lfs -text
31
+ *.xz filter=lfs diff=lfs merge=lfs -text
32
+ *.zip filter=lfs diff=lfs merge=lfs -text
33
+ *.zst filter=lfs diff=lfs merge=lfs -text
34
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ method.jpg filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1,164 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ training_data/
2
+ results/
3
+
4
+
5
+ # Byte-compiled / optimized / DLL files
6
+ __pycache__/
7
+ *.py[cod]
8
+ *$py.class
9
+
10
+ # C extensions
11
+ *.so
12
+
13
+ # Distribution / packaging
14
+ .Python
15
+ build/
16
+ develop-eggs/
17
+ dist/
18
+ downloads/
19
+ eggs/
20
+ .eggs/
21
+ lib/
22
+ lib64/
23
+ parts/
24
+ sdist/
25
+ var/
26
+ wheels/
27
+ share/python-wheels/
28
+ *.egg-info/
29
+ .installed.cfg
30
+ *.egg
31
+ MANIFEST
32
+
33
+ # PyInstaller
34
+ # Usually these files are written by a python script from a template
35
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
36
+ *.manifest
37
+ *.spec
38
+
39
+ # Installer logs
40
+ pip-log.txt
41
+ pip-delete-this-directory.txt
42
+
43
+ # Unit test / coverage reports
44
+ htmlcov/
45
+ .tox/
46
+ .nox/
47
+ .coverage
48
+ .coverage.*
49
+ .cache
50
+ nosetests.xml
51
+ coverage.xml
52
+ *.cover
53
+ *.py,cover
54
+ .hypothesis/
55
+ .pytest_cache/
56
+ cover/
57
+
58
+ # Translations
59
+ *.mo
60
+ *.pot
61
+
62
+ # Django stuff:
63
+ *.log
64
+ local_settings.py
65
+ db.sqlite3
66
+ db.sqlite3-journal
67
+
68
+ # Flask stuff:
69
+ instance/
70
+ .webassets-cache
71
+
72
+ # Scrapy stuff:
73
+ .scrapy
74
+
75
+ # Sphinx documentation
76
+ docs/_build/
77
+
78
+ # PyBuilder
79
+ .pybuilder/
80
+ target/
81
+
82
+ # Jupyter Notebook
83
+ .ipynb_checkpoints
84
+
85
+ # IPython
86
+ profile_default/
87
+ ipython_config.py
88
+
89
+ # pyenv
90
+ # For a library or package, you might want to ignore these files since the code is
91
+ # intended to run in multiple environments; otherwise, check them in:
92
+ # .python-version
93
+
94
+ # pipenv
95
+ # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
96
+ # However, in case of collaboration, if having platform-specific dependencies or dependencies
97
+ # having no cross-platform support, pipenv may install dependencies that don't work, or not
98
+ # install all needed dependencies.
99
+ #Pipfile.lock
100
+
101
+ # poetry
102
+ # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
103
+ # This is especially recommended for binary packages to ensure reproducibility, and is more
104
+ # commonly ignored for libraries.
105
+ # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
106
+ #poetry.lock
107
+
108
+ # pdm
109
+ # Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
110
+ #pdm.lock
111
+ # pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
112
+ # in version control.
113
+ # https://pdm.fming.dev/#use-with-ide
114
+ .pdm.toml
115
+
116
+ # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
117
+ __pypackages__/
118
+
119
+ # Celery stuff
120
+ celerybeat-schedule
121
+ celerybeat.pid
122
+
123
+ # SageMath parsed files
124
+ *.sage.py
125
+
126
+ # Environments
127
+ .env
128
+ .venv
129
+ env/
130
+ venv/
131
+ ENV/
132
+ env.bak/
133
+ venv.bak/
134
+
135
+ # Spyder project settings
136
+ .spyderproject
137
+ .spyproject
138
+
139
+ # Rope project settings
140
+ .ropeproject
141
+
142
+ # mkdocs documentation
143
+ /site
144
+
145
+ # mypy
146
+ .mypy_cache/
147
+ .dmypy.json
148
+ dmypy.json
149
+
150
+ # Pyre type checker
151
+ .pyre/
152
+
153
+ # pytype static type analyzer
154
+ .pytype/
155
+
156
+ # Cython debug symbols
157
+ cython_debug/
158
+
159
+ # PyCharm
160
+ # JetBrains specific template is maintained in a separate JetBrains.gitignore that can
161
+ # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
162
+ # and can be added to the global gitignore or merged into this file. For a more nuclear
163
+ # option (not recommended) you can uncomment the following to ignore the entire idea folder.
164
+ #.idea/
.gitmodules ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ [submodule "custom-diffusion"]
2
+ path = custom-diffusion
3
+ url = https://github.com/adobe-research/custom-diffusion
.pre-commit-config.yaml ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ repos:
2
+ - repo: https://github.com/pre-commit/pre-commit-hooks
3
+ rev: v4.2.0
4
+ hooks:
5
+ - id: check-executables-have-shebangs
6
+ - id: check-json
7
+ - id: check-merge-conflict
8
+ - id: check-shebang-scripts-are-executable
9
+ - id: check-toml
10
+ - id: check-yaml
11
+ - id: double-quote-string-fixer
12
+ - id: end-of-file-fixer
13
+ - id: mixed-line-ending
14
+ args: ['--fix=lf']
15
+ - id: requirements-txt-fixer
16
+ - id: trailing-whitespace
17
+ - repo: https://github.com/myint/docformatter
18
+ rev: v1.4
19
+ hooks:
20
+ - id: docformatter
21
+ args: ['--in-place']
22
+ - repo: https://github.com/pycqa/isort
23
+ rev: 5.10.1
24
+ hooks:
25
+ - id: isort
26
+ - repo: https://github.com/pre-commit/mirrors-mypy
27
+ rev: v0.991
28
+ hooks:
29
+ - id: mypy
30
+ args: ['--ignore-missing-imports']
31
+ - repo: https://github.com/google/yapf
32
+ rev: v0.32.0
33
+ hooks:
34
+ - id: yapf
35
+ args: ['--parallel', '--in-place']
.style.yapf ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ [style]
2
+ based_on_style = pep8
3
+ blank_line_before_nested_class_or_def = false
4
+ spaces_before_comment = 2
5
+ split_before_logical_operator = true
LICENSE ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Copyright 2022, Adobe Inc. and its licensors. All rights reserved.
2
+
3
+ ADOBE RESEARCH LICENSE
4
+
5
+ Adobe grants any person or entity ("you" or "your") obtaining a copy of these certain research materials that are owned by Adobe ("Licensed Materials") a nonexclusive, worldwide, royalty-free, revocable, fully paid license to (A) reproduce, use, modify, and publicly display the Licensed Materials; and (B) redistribute the Licensed Materials, and modifications or derivative works thereof, provided the following conditions are met:
6
+
7
+ - The rights granted herein may be exercised for noncommercial research purposes (i.e., academic research and teaching) only. Noncommercial research purposes do not include commercial licensing or distribution, development of commercial products, or any other activity that results in commercial gain.
8
+ - You may add your own copyright statement to your modifications and/or provide additional or different license terms for use, reproduction, modification, public display, and redistribution of your modifications and derivative works, provided that such license terms limit the use, reproduction, modification, public display, and redistribution of such modifications and derivative works to noncommercial research purposes only.
9
+ - You acknowledge that Adobe and its licensors own all right, title, and interest in the Licensed Materials.
10
+ - All copies of the Licensed Materials must include the above copyright notice, this list of conditions, and the disclaimer below.
11
+
12
+ Failure to meet any of the above conditions will automatically terminate the rights granted herein.
13
+
14
+ THE LICENSED MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. THE ENTIRE RISK AS TO THE USE, RESULTS, AND PERFORMANCE OF THE LICENSED MATERIALS IS ASSUMED BY YOU. ADOBE DISCLAIMS ALL WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, WITH REGARD TO YOUR USE OF THE LICENSED MATERIALS, INCLUDING, BUT NOT LIMITED TO, NONINFRINGEMENT OF THIRD-PARTY RIGHTS. IN NO EVENT WILL ADOBE BE LIABLE FOR ANY ACTUAL, INCIDENTAL, SPECIAL OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS OR OTHER COMMERCIAL LOSS, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THE LICENSED MATERIALS, EVEN IF ADOBE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
15
+
16
+
17
+ MIT License
18
+
19
+ Copyright (c) 2022 hysts
20
+
21
+ Permission is hereby granted, free of charge, to any person obtaining a copy
22
+ of this software and associated documentation files (the "Software"), to deal
23
+ in the Software without restriction, including without limitation the rights
24
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
25
+ copies of the Software, and to permit persons to whom the Software is
26
+ furnished to do so, subject to the following conditions:
27
+
28
+ The above copyright notice and this permission notice shall be included in all
29
+ copies or substantial portions of the Software.
30
+
31
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
32
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
33
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
34
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
35
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
36
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
37
+ SOFTWARE.
README.md ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: Custom-Diffusion + SD Training
3
+ emoji: 🏢
4
+ colorFrom: red
5
+ colorTo: purple
6
+ sdk: gradio
7
+ sdk_version: 3.12.0
8
+ app_file: app.py
9
+ pinned: false
10
+ duplicated_from: nupurkmr9/custom-diffusion
11
+ ---
12
+
13
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py ADDED
@@ -0,0 +1,389 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ """Demo app for https://github.com/adobe-research/custom-diffusion.
3
+
4
+ The code in this repo is partly adapted from the following repository:
5
+ https://huggingface.co/spaces/hysts/LoRA-SD-training
6
+ MIT License
7
+ Copyright (c) 2022 hysts
8
+
9
+ ==========================================================================================
10
+
11
+ Adobe’s modifications are Copyright 2022 Adobe Research. All rights reserved.
12
+ Adobe’s modifications are licensed under the Adobe Research License. To view a copy of the license, visit
13
+ LICENSE.
14
+
15
+ ==========================================================================================
16
+ """
17
+
18
+ from __future__ import annotations
19
+ import sys
20
+ import os
21
+ import pathlib
22
+
23
+ import gradio as gr
24
+ import torch
25
+
26
+ from inference import InferencePipeline
27
+ from trainer import Trainer
28
+ from uploader import upload
29
+
30
+ TITLE = '# Custom Diffusion + StableDiffusion Training UI'
31
+ DESCRIPTION = '''This is a demo for [https://github.com/adobe-research/custom-diffusion](https://github.com/adobe-research/custom-diffusion).
32
+ It is recommended to upgrade to GPU in Settings after duplicating this space to use it.
33
+ <a href="https://huggingface.co/spaces/nupurkmr9/custom-diffusion?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
34
+ '''
35
+ DETAILDESCRIPTION='''
36
+ Custom Diffusion allows you to fine-tune text-to-image diffusion models, such as Stable Diffusion, given a few images of a new concept (~4-20).
37
+ We fine-tune only a subset of model parameters, namely key and value projection matrices, in the cross-attention layers and the modifier token used to represent the object.
38
+ This also reduces the extra storage for each additional concept to 75MB. Our method also allows you to use a combination of concepts. There's still limitations on which compositions work. For more analysis please refer to our [website](https://www.cs.cmu.edu/~custom-diffusion/).
39
+ <center>
40
+ <img src="https://huggingface.co/spaces/nupurkmr9/custom-diffusion/resolve/main/method.jpg" width="600" align="center" >
41
+ </center>
42
+ '''
43
+
44
+ ORIGINAL_SPACE_ID = 'nupurkmr9/custom-diffusion'
45
+ SPACE_ID = os.getenv('SPACE_ID', ORIGINAL_SPACE_ID)
46
+ SHARED_UI_WARNING = f'''# Attention - This Space doesn't work in this shared UI. You can duplicate and use it with a paid private T4 GPU.
47
+
48
+ <center><a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></center>
49
+ '''
50
+ if os.getenv('SYSTEM') == 'spaces' and SPACE_ID != ORIGINAL_SPACE_ID:
51
+ SETTINGS = f'<a href="https://huggingface.co/spaces/{SPACE_ID}/settings">Settings</a>'
52
+
53
+ else:
54
+ SETTINGS = 'Settings'
55
+ CUDA_NOT_AVAILABLE_WARNING = f'''# Attention - Running on CPU.
56
+ <center>
57
+ You can assign a GPU in the {SETTINGS} tab if you are running this on HF Spaces.
58
+ "T4 small" is sufficient to run this demo.
59
+ </center>
60
+ '''
61
+
62
+ os.system("git clone https://github.com/adobe-research/custom-diffusion")
63
+ sys.path.append("custom-diffusion")
64
+
65
+ def show_warning(warning_text: str) -> gr.Blocks:
66
+ with gr.Blocks() as demo:
67
+ with gr.Box():
68
+ gr.Markdown(warning_text)
69
+ return demo
70
+
71
+
72
+ def update_output_files() -> dict:
73
+ paths = sorted(pathlib.Path('results').glob('*.bin'))
74
+ paths = [path.as_posix() for path in paths] # type: ignore
75
+ return gr.update(value=paths or None)
76
+
77
+
78
+ def create_training_demo(trainer: Trainer,
79
+ pipe: InferencePipeline) -> gr.Blocks:
80
+ with gr.Blocks() as demo:
81
+ base_model = gr.Dropdown(
82
+ choices=['stabilityai/stable-diffusion-2-1-base', 'CompVis/stable-diffusion-v1-4'],
83
+ value='CompVis/stable-diffusion-v1-4',
84
+ label='Base Model',
85
+ visible=True)
86
+ resolution = gr.Dropdown(choices=['512', '768'],
87
+ value='512',
88
+ label='Resolution',
89
+ visible=True)
90
+
91
+ with gr.Row():
92
+ with gr.Box():
93
+ concept_images_collection = []
94
+ concept_prompt_collection = []
95
+ class_prompt_collection = []
96
+ buttons_collection = []
97
+ delete_collection = []
98
+ is_visible = []
99
+ maximum_concepts = 3
100
+ row = [None] * maximum_concepts
101
+ for x in range(maximum_concepts):
102
+ ordinal = lambda n: "%d%s" % (n, "tsnrhtdd"[(n // 10 % 10 != 1) * (n % 10 < 4) * n % 10::4])
103
+ ordinal_concept = ["<new1> cat", "<new2> wooden pot", "<new3> chair"]
104
+ if(x == 0):
105
+ visible = True
106
+ is_visible.append(gr.State(value=True))
107
+ else:
108
+ visible = False
109
+ is_visible.append(gr.State(value=False))
110
+
111
+ concept_images_collection.append(gr.Files(label=f'''Upload the images for your {ordinal(x+1) if (x>0) else ""} concept''', visible=visible))
112
+ with gr.Column(visible=visible) as row[x]:
113
+ concept_prompt_collection.append(
114
+ gr.Textbox(label=f'''{ordinal(x+1) if (x>0) else ""} concept prompt ''', max_lines=1,
115
+ placeholder=f'''Example: "photo of a {ordinal_concept[x]}"''' )
116
+ )
117
+ class_prompt_collection.append(
118
+ gr.Textbox(label=f'''{ordinal(x+1) if (x>0) else ""} class prompt ''',
119
+ max_lines=1, placeholder=f'''Example: "{ordinal_concept[x][7:]}"''')
120
+ )
121
+ with gr.Row():
122
+ if(x < maximum_concepts-1):
123
+ buttons_collection.append(gr.Button(value=f"Add {ordinal(x+2)} concept", visible=visible))
124
+ if(x > 0):
125
+ delete_collection.append(gr.Button(value=f"Delete {ordinal(x+1)} concept"))
126
+
127
+ counter_add = 1
128
+ for button in buttons_collection:
129
+ if(counter_add < len(buttons_collection)):
130
+ button.click(lambda:
131
+ [gr.update(visible=True),gr.update(visible=True), gr.update(visible=False), gr.update(visible=True), True, None],
132
+ None,
133
+ [row[counter_add], concept_images_collection[counter_add], buttons_collection[counter_add-1], buttons_collection[counter_add], is_visible[counter_add], concept_images_collection[counter_add]], queue=False)
134
+ else:
135
+ button.click(lambda:
136
+ [gr.update(visible=True),gr.update(visible=True), gr.update(visible=False), True],
137
+ None,
138
+ [row[counter_add], concept_images_collection[counter_add], buttons_collection[counter_add-1], is_visible[counter_add]], queue=False)
139
+ counter_add += 1
140
+
141
+ counter_delete = 1
142
+ for delete_button in delete_collection:
143
+ if(counter_delete < len(delete_collection)+1):
144
+ if counter_delete == 1:
145
+ delete_button.click(lambda:
146
+ [gr.update(visible=False, value=None),gr.update(visible=False), gr.update(visible=True), gr.update(visible=False),False],
147
+ None,
148
+ [concept_images_collection[counter_delete], row[counter_delete], buttons_collection[counter_delete-1], buttons_collection[counter_delete], is_visible[counter_delete]], queue=False)
149
+ else:
150
+ delete_button.click(lambda:
151
+ [gr.update(visible=False, value=None),gr.update(visible=False), gr.update(visible=True), False],
152
+ None,
153
+ [concept_images_collection[counter_delete], row[counter_delete], buttons_collection[counter_delete-1], is_visible[counter_delete]], queue=False)
154
+ counter_delete += 1
155
+ gr.Markdown('''
156
+ - We use "\<new1\>" modifier_token in front of the concept, e.g., "\<new1\> cat". For multiple concepts use "\<new2\>", "\<new3\>" etc. Increase the number of steps with more concepts.
157
+ - For a new concept an e.g. concept prompt is "photo of a \<new1\> cat" and "cat" for class prompt.
158
+ - For a style concept, use "painting in the style of \<new1\> art" for concept prompt and "art" for class prompt.
159
+ - Class prompt should be the object category.
160
+ - If "Train Text Encoder", disable "modifier token" and use any unique text to describe the concept e.g. "ktn cat".
161
+ ''')
162
+ with gr.Box():
163
+ gr.Markdown('Training Parameters')
164
+ with gr.Row():
165
+ modifier_token = gr.Checkbox(label='modifier token',
166
+ value=True)
167
+ train_text_encoder = gr.Checkbox(label='Train Text Encoder',
168
+ value=False)
169
+ num_training_steps = gr.Number(
170
+ label='Number of Training Steps', value=1000, precision=0)
171
+ learning_rate = gr.Number(label='Learning Rate', value=0.00001)
172
+ batch_size = gr.Number(
173
+ label='batch_size', value=1, precision=0)
174
+ with gr.Row():
175
+ use_8bit_adam = gr.Checkbox(label='Use 8bit Adam', value=True)
176
+ gradient_checkpointing = gr.Checkbox(label='Enable gradient checkpointing', value=False)
177
+ with gr.Accordion('Other Parameters', open=False):
178
+ gradient_accumulation = gr.Number(
179
+ label='Number of Gradient Accumulation',
180
+ value=1,
181
+ precision=0)
182
+ num_reg_images = gr.Number(
183
+ label='Number of Class Concept images',
184
+ value=200,
185
+ precision=0)
186
+ gen_images = gr.Checkbox(label='Generated images as regularization',
187
+ value=False)
188
+ gr.Markdown('''
189
+ - It will take about ~10 minutes to train for 1000 steps and ~21GB on a 3090 GPU.
190
+ - Our results in the paper are trained with batch-size 4 (8 including class regularization samples).
191
+ - Enable gradient checkpointing for lower memory requirements (~14GB) at the expense of slower backward pass.
192
+ - Note that your trained models will be deleted when the second training is started. You can upload your trained model in the "Upload" tab.
193
+ - We retrieve real images for class concept using clip_retireval library which can take some time.
194
+ ''')
195
+
196
+ run_button = gr.Button('Start Training')
197
+ with gr.Box():
198
+ with gr.Row():
199
+ check_status_button = gr.Button('Check Training Status')
200
+ with gr.Column():
201
+ with gr.Box():
202
+ gr.Markdown('Message')
203
+ training_status = gr.Markdown()
204
+ output_files = gr.Files(label='Trained Weight Files')
205
+
206
+ run_button.click(fn=pipe.clear,
207
+ inputs=None,
208
+ outputs=None,)
209
+ run_button.click(fn=trainer.run,
210
+ inputs=[
211
+ base_model,
212
+ resolution,
213
+ num_training_steps,
214
+ learning_rate,
215
+ train_text_encoder,
216
+ modifier_token,
217
+ gradient_accumulation,
218
+ batch_size,
219
+ use_8bit_adam,
220
+ gradient_checkpointing,
221
+ gen_images,
222
+ num_reg_images,
223
+ ] +
224
+ concept_images_collection +
225
+ concept_prompt_collection +
226
+ class_prompt_collection
227
+ ,
228
+ outputs=[
229
+ training_status,
230
+ output_files,
231
+ ],
232
+ queue=False)
233
+ check_status_button.click(fn=trainer.check_if_running,
234
+ inputs=None,
235
+ outputs=training_status,
236
+ queue=False)
237
+ check_status_button.click(fn=update_output_files,
238
+ inputs=None,
239
+ outputs=output_files,
240
+ queue=False)
241
+ return demo
242
+
243
+
244
+ def find_weight_files() -> list[str]:
245
+ curr_dir = pathlib.Path(__file__).parent
246
+ paths = sorted(curr_dir.rglob('*.bin'))
247
+ paths = [path for path in paths if '.lfs' not in str(path)]
248
+ return [path.relative_to(curr_dir).as_posix() for path in paths]
249
+
250
+
251
+ def reload_custom_diffusion_weight_list() -> dict:
252
+ return gr.update(choices=find_weight_files())
253
+
254
+
255
+ def create_inference_demo(pipe: InferencePipeline) -> gr.Blocks:
256
+ with gr.Blocks() as demo:
257
+ with gr.Row():
258
+ with gr.Column():
259
+ base_model = gr.Dropdown(
260
+ choices=['stabilityai/stable-diffusion-2-1-base', 'CompVis/stable-diffusion-v1-4'],
261
+ value='CompVis/stable-diffusion-v1-4',
262
+ label='Base Model',
263
+ visible=True)
264
+ resolution = gr.Dropdown(choices=[512, 768],
265
+ value=512,
266
+ label='Resolution',
267
+ visible=True)
268
+ reload_button = gr.Button('Reload Weight List')
269
+ weight_name = gr.Dropdown(choices=find_weight_files(),
270
+ value='custom-diffusion-models/cat.bin',
271
+ label='Custom Diffusion Weight File')
272
+ prompt = gr.Textbox(
273
+ label='Prompt',
274
+ max_lines=1,
275
+ placeholder='Example: "\<new1\> cat in outer space"')
276
+ seed = gr.Slider(label='Seed',
277
+ minimum=0,
278
+ maximum=100000,
279
+ step=1,
280
+ value=42)
281
+ with gr.Accordion('Other Parameters', open=False):
282
+ num_steps = gr.Slider(label='Number of Steps',
283
+ minimum=0,
284
+ maximum=500,
285
+ step=1,
286
+ value=100)
287
+ guidance_scale = gr.Slider(label='CFG Scale',
288
+ minimum=0,
289
+ maximum=50,
290
+ step=0.1,
291
+ value=6)
292
+ eta = gr.Slider(label='DDIM eta',
293
+ minimum=0,
294
+ maximum=1.,
295
+ step=0.1,
296
+ value=1.)
297
+ batch_size = gr.Slider(label='Batch Size',
298
+ minimum=0,
299
+ maximum=10.,
300
+ step=1,
301
+ value=1)
302
+
303
+ run_button = gr.Button('Generate')
304
+
305
+ gr.Markdown('''
306
+ - Models with names starting with "custom-diffusion-models/" are the pretrained models provided in the [original repo](https://github.com/adobe-research/custom-diffusion), and the ones with names starting with "results/delta.bin" are your trained models.
307
+ - After training, you can press "Reload Weight List" button to load your trained model names.
308
+ - Increase number of steps in Other parameters for better samples qualitatively.
309
+ ''')
310
+ with gr.Column():
311
+ result = gr.Image(label='Result')
312
+
313
+ reload_button.click(fn=reload_custom_diffusion_weight_list,
314
+ inputs=None,
315
+ outputs=weight_name)
316
+ prompt.submit(fn=pipe.run,
317
+ inputs=[
318
+ base_model,
319
+ weight_name,
320
+ prompt,
321
+ seed,
322
+ num_steps,
323
+ guidance_scale,
324
+ eta,
325
+ batch_size,
326
+ resolution
327
+ ],
328
+ outputs=result,
329
+ queue=False)
330
+ run_button.click(fn=pipe.run,
331
+ inputs=[
332
+ base_model,
333
+ weight_name,
334
+ prompt,
335
+ seed,
336
+ num_steps,
337
+ guidance_scale,
338
+ eta,
339
+ batch_size,
340
+ resolution
341
+ ],
342
+ outputs=result,
343
+ queue=False)
344
+ return demo
345
+
346
+
347
+ def create_upload_demo() -> gr.Blocks:
348
+ with gr.Blocks() as demo:
349
+ model_name = gr.Textbox(label='Model Name')
350
+ hf_token = gr.Textbox(
351
+ label='Hugging Face Token (with write permission)')
352
+ upload_button = gr.Button('Upload')
353
+ with gr.Box():
354
+ gr.Markdown('Message')
355
+ result = gr.Markdown()
356
+ gr.Markdown('''
357
+ - You can upload your trained model to your private Model repo (i.e. https://huggingface.co/{your_username}/{model_name}).
358
+ - You can find your Hugging Face token [here](https://huggingface.co/settings/tokens).
359
+ ''')
360
+
361
+ upload_button.click(fn=upload,
362
+ inputs=[model_name, hf_token],
363
+ outputs=result)
364
+
365
+ return demo
366
+
367
+
368
+ pipe = InferencePipeline()
369
+ trainer = Trainer()
370
+
371
+ with gr.Blocks(css='style.css') as demo:
372
+ if os.getenv('IS_SHARED_UI'):
373
+ show_warning(SHARED_UI_WARNING)
374
+ if not torch.cuda.is_available():
375
+ show_warning(CUDA_NOT_AVAILABLE_WARNING)
376
+
377
+ gr.Markdown(TITLE)
378
+ gr.Markdown(DESCRIPTION)
379
+ gr.Markdown(DETAILDESCRIPTION)
380
+
381
+ with gr.Tabs():
382
+ with gr.TabItem('Train'):
383
+ create_training_demo(trainer, pipe)
384
+ with gr.TabItem('Test'):
385
+ create_inference_demo(pipe)
386
+ with gr.TabItem('Upload'):
387
+ create_upload_demo()
388
+
389
+ demo.queue(default_enabled=False).launch(share=False)
custom-diffusion-models/barn.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b200774e6929f9f51d0c0f3f1e13455853a703e5552d563b7a7aa98ab6ff942c
3
+ size 76690690
custom-diffusion-models/cat.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:93899d5900e9af2a7cff824146981194859d5c62c637c47ae6c487e16668aa6e
3
+ size 76690690
custom-diffusion-models/chair.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a17c8e6b5b3d5f76c3b6792536113987a1de4958e107cfded31a6dd3f6d236b5
3
+ size 76690690
custom-diffusion-models/dog.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bfacae58002ad0ac1a4e48bd98de9719a91038c4b55cd4caa721e3329460d6d4
3
+ size 76690690
custom-diffusion-models/flower.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c10d2361abfe98728f647cdbd3fa0506e872ad65e9591d70a3cf2b0eb94f5cac
3
+ size 76690690
custom-diffusion-models/moongate.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:865ccdd950d4384af1b4cf45d955db4b26ec3736eb03bccab70fee4f51abb441
3
+ size 76687301
custom-diffusion-models/table.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ebea89e9d968f8bce8f06d9b881dacc5002edeca989a23ddf1473684219f87cb
3
+ size 76690690
custom-diffusion-models/teddybear.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c521048539a1b73a9d909f78f91fd776aa1441a12ae2358477660ad3eee1fcf0
3
+ size 76690690
custom-diffusion-models/tortoise_plushy.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1f457414ca52d6ae71d96c432266c1ab4b53fe5c163055162a1f62318bc5f146
3
+ size 76690690
custom-diffusion-models/wooden_pot.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2affc64108eb7ba9c867fa3acbde15f8352b95bb24b0bb95dfeab913916d1db3
3
+ size 76690690
inference.py ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ import gc
4
+ import pathlib
5
+ import sys
6
+
7
+ import gradio as gr
8
+ import PIL.Image
9
+ import numpy as np
10
+
11
+ import torch
12
+ from diffusers import StableDiffusionPipeline
13
+ sys.path.insert(0, './custom-diffusion')
14
+
15
+
16
+ class InferencePipeline:
17
+ def __init__(self):
18
+ self.pipe = None
19
+ self.device = torch.device(
20
+ 'cuda:0' if torch.cuda.is_available() else 'cpu')
21
+ self.weight_path = None
22
+
23
+ def clear(self) -> None:
24
+ self.weight_path = None
25
+ del self.pipe
26
+ self.pipe = None
27
+ torch.cuda.empty_cache()
28
+ gc.collect()
29
+
30
+ @staticmethod
31
+ def get_weight_path(name: str) -> pathlib.Path:
32
+ curr_dir = pathlib.Path(__file__).parent
33
+ return curr_dir / name
34
+
35
+ def load_pipe(self, model_id: str, filename: str) -> None:
36
+ weight_path = self.get_weight_path(filename)
37
+ if weight_path == self.weight_path:
38
+ return
39
+ self.weight_path = weight_path
40
+ weight = torch.load(self.weight_path, map_location=self.device)
41
+
42
+ if self.device.type == 'cpu':
43
+ pipe = StableDiffusionPipeline.from_pretrained(model_id)
44
+ else:
45
+ pipe = StableDiffusionPipeline.from_pretrained(
46
+ model_id, torch_dtype=torch.float16)
47
+ pipe = pipe.to(self.device)
48
+
49
+ from src import diffuser_training
50
+ diffuser_training.load_model(pipe.text_encoder, pipe.tokenizer, pipe.unet, weight_path, compress=False)
51
+
52
+ self.pipe = pipe
53
+
54
+ def run(
55
+ self,
56
+ base_model: str,
57
+ weight_name: str,
58
+ prompt: str,
59
+ seed: int,
60
+ n_steps: int,
61
+ guidance_scale: float,
62
+ eta: float,
63
+ batch_size: int,
64
+ resolution: int,
65
+ ) -> PIL.Image.Image:
66
+ if not torch.cuda.is_available():
67
+ raise gr.Error('CUDA is not available.')
68
+
69
+ self.load_pipe(base_model, weight_name)
70
+
71
+ generator = torch.Generator(device=self.device).manual_seed(seed)
72
+ out = self.pipe([prompt]*batch_size,
73
+ num_inference_steps=n_steps,
74
+ guidance_scale=guidance_scale,
75
+ height=resolution, width=resolution,
76
+ eta = eta,
77
+ generator=generator) # type: ignore
78
+ torch.cuda.empty_cache()
79
+ out = out.images
80
+ out = PIL.Image.fromarray(np.hstack([np.array(x) for x in out]))
81
+ return out
method.jpg ADDED

Git LFS Details

  • SHA256: 12a48301b17741a6c1bea4208b7dcb5613b2cfe974f9d6c8e1de331d6dd8a0a6
  • Pointer size: 132 Bytes
  • Size of remote file: 1.51 MB
requirements.txt ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ accelerate==0.15.0
2
+ bitsandbytes==0.35.4
3
+ diffusers==0.10.2
4
+ ftfy==6.1.1
5
+ Pillow==9.3.0
6
+ torch==1.13.0
7
+ torchvision==0.14.0
8
+ transformers==4.25.1
9
+ triton==2.0.0.dev20220701
10
+ xformers==0.0.13
11
+ clip_retrieval
style.css ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ h1 {
2
+ text-align: center;
3
+ }
trainer.py ADDED
@@ -0,0 +1,164 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ import os
4
+ import pathlib
5
+ import shlex
6
+ import shutil
7
+ import subprocess
8
+
9
+ import gradio as gr
10
+ import PIL.Image
11
+ import torch
12
+ import json
13
+
14
+ os.environ['PYTHONPATH'] = f'custom-diffusion:{os.getenv("PYTHONPATH", "")}'
15
+
16
+
17
+ def pad_image(image: PIL.Image.Image) -> PIL.Image.Image:
18
+ w, h = image.size
19
+ if w == h:
20
+ return image
21
+ elif w > h:
22
+ new_image = PIL.Image.new(image.mode, (w, w), (0, 0, 0))
23
+ new_image.paste(image, (0, (w - h) // 2))
24
+ return new_image
25
+ else:
26
+ new_image = PIL.Image.new(image.mode, (h, h), (0, 0, 0))
27
+ new_image.paste(image, ((h - w) // 2, 0))
28
+ return new_image
29
+
30
+
31
+ class Trainer:
32
+ def __init__(self):
33
+ self.is_running = False
34
+ self.is_running_message = 'Another training is in progress.'
35
+
36
+ self.output_dir = pathlib.Path('results')
37
+ self.instance_data_dir = self.output_dir / 'training_data'
38
+ self.class_data_dir = self.output_dir / 'regularization_data'
39
+
40
+ def check_if_running(self) -> dict:
41
+ if self.is_running:
42
+ return gr.update(value=self.is_running_message)
43
+ else:
44
+ return gr.update(value='No training is running.')
45
+
46
+ def cleanup_dirs(self) -> None:
47
+ shutil.rmtree(self.output_dir, ignore_errors=True)
48
+
49
+ def prepare_dataset(self, concept_images_collection: list, concept_prompt_collection: list, class_prompt_collection: list, resolution: int) -> None:
50
+ self.instance_data_dir.mkdir(parents=True)
51
+ concepts_list = []
52
+
53
+ for i in range(len(concept_images_collection)):
54
+ concept_dir = self.instance_data_dir / f'{i}'
55
+ class_dir = self.class_data_dir / f'{i}'
56
+ concept_dir.mkdir(parents=True)
57
+ concept_images = concept_images_collection[i]
58
+
59
+ concepts_list.append(
60
+ {
61
+ "instance_prompt": concept_prompt_collection[i],
62
+ "class_prompt": class_prompt_collection[i],
63
+ "instance_data_dir": f'{concept_dir}',
64
+ "class_data_dir": f'{class_dir}'
65
+ }
66
+ )
67
+
68
+ for i, temp_path in enumerate(concept_images):
69
+ image = PIL.Image.open(temp_path.name)
70
+ image = pad_image(image)
71
+ # image = image.resize((resolution, resolution))
72
+ image = image.convert('RGB')
73
+ out_path = concept_dir / f'{i:03d}.jpg'
74
+ image.save(out_path, format='JPEG', quality=100)
75
+
76
+ print(concepts_list)
77
+ json.dump(concepts_list, open( f'{self.output_dir}/temp.json' , 'w') )
78
+
79
+
80
+ def run(
81
+ self,
82
+ base_model: str,
83
+ resolution_s: str,
84
+ n_steps: int,
85
+ learning_rate: float,
86
+ train_text_encoder: bool,
87
+ modifier_token: bool,
88
+ gradient_accumulation: int,
89
+ batch_size: int,
90
+ use_8bit_adam: bool,
91
+ gradient_checkpointing: bool,
92
+ gen_images: bool,
93
+ num_reg_images: int,
94
+ *inputs,
95
+ ) -> tuple[dict, list[pathlib.Path]]:
96
+ if not torch.cuda.is_available():
97
+ raise gr.Error('CUDA is not available.')
98
+
99
+ num_concept = 0
100
+ for i in range(len(inputs) // 3):
101
+ if inputs[i] != None:
102
+ num_concept +=1
103
+
104
+ print(num_concept, inputs)
105
+ concept_images_collection = inputs[: num_concept]
106
+ concept_prompt_collection = inputs[3: 3 + num_concept]
107
+ class_prompt_collection = inputs[6: 6+num_concept]
108
+ if self.is_running:
109
+ return gr.update(value=self.is_running_message), []
110
+
111
+ if concept_images_collection is None:
112
+ raise gr.Error('You need to upload images.')
113
+ if not concept_prompt_collection:
114
+ raise gr.Error('The concept prompt is missing.')
115
+
116
+ resolution = int(resolution_s)
117
+
118
+ self.cleanup_dirs()
119
+ self.prepare_dataset(concept_images_collection, concept_prompt_collection, class_prompt_collection, resolution)
120
+ torch.cuda.empty_cache()
121
+ command = f'''
122
+ accelerate launch custom-diffusion/src/diffuser_training.py \
123
+ --pretrained_model_name_or_path={base_model} \
124
+ --output_dir={self.output_dir} \
125
+ --concepts_list={f'{self.output_dir}/temp.json'} \
126
+ --with_prior_preservation --prior_loss_weight=1.0 \
127
+ --resolution={resolution} \
128
+ --train_batch_size={batch_size} \
129
+ --gradient_accumulation_steps={gradient_accumulation} \
130
+ --learning_rate={learning_rate} \
131
+ --lr_scheduler="constant" \
132
+ --lr_warmup_steps=0 \
133
+ --max_train_steps={n_steps} \
134
+ --num_class_images={num_reg_images} \
135
+ --initializer_token="ktn+pll+ucd" \
136
+ --scale_lr --hflip
137
+ '''
138
+ if modifier_token:
139
+ tokens = '+'.join([f'<new{i+1}>' for i in range(num_concept)])
140
+ command += f' --modifier_token {tokens}'
141
+
142
+ if not gen_images:
143
+ command += ' --real_prior'
144
+ if use_8bit_adam:
145
+ command += ' --use_8bit_adam'
146
+ if train_text_encoder:
147
+ command += f' --train_text_encoder'
148
+ if gradient_checkpointing:
149
+ command += f' --gradient_checkpointing'
150
+
151
+ with open(self.output_dir / 'train.sh', 'w') as f:
152
+ command_s = ' '.join(command.split())
153
+ f.write(command_s)
154
+
155
+ self.is_running = True
156
+ res = subprocess.run(shlex.split(command))
157
+ self.is_running = False
158
+
159
+ if res.returncode == 0:
160
+ result_message = 'Training Completed!'
161
+ else:
162
+ result_message = 'Training Failed!'
163
+ weight_paths = sorted(self.output_dir.glob('*.bin'))
164
+ return gr.update(value=result_message), weight_paths
uploader.py ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from huggingface_hub import HfApi
3
+
4
+
5
+ def upload(model_name: str, hf_token: str) -> None:
6
+ api = HfApi(token=hf_token)
7
+ user_name = api.whoami()['name']
8
+ model_id = f'{user_name}/{model_name}'
9
+ try:
10
+ api.create_repo(model_id, repo_type='model', private=True)
11
+ api.upload_folder(repo_id=model_id,
12
+ folder_path='results',
13
+ path_in_repo='results',
14
+ repo_type='model')
15
+ url = f'https://huggingface.co/{model_id}'
16
+ message = f'Your model was successfully uploaded to [{url}]({url}).'
17
+ except Exception as e:
18
+ message = str(e)
19
+
20
+ return gr.update(value=message, visible=True)