File size: 15,669 Bytes
e276be2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
import io
import os
import sys
from functools import partial
import math
import torchvision.transforms as TT
from sgm.webds import MetaDistributedWebDataset
import random
from fractions import Fraction
from typing import Union, Optional, Dict, Any, Tuple
from torchvision.io.video import av
import numpy as np
import torch
from torchvision.io import _video_opt
from torchvision.io.video import _check_av_available, _read_from_stream, _align_audio_frames
from torchvision.transforms.functional import center_crop, resize
from torchvision.transforms import InterpolationMode
import decord
from decord import VideoReader
from torch.utils.data import Dataset


def read_video(
    filename: str,
    start_pts: Union[float, Fraction] = 0,
    end_pts: Optional[Union[float, Fraction]] = None,
    pts_unit: str = "pts",
    output_format: str = "THWC",
) -> Tuple[torch.Tensor, torch.Tensor, Dict[str, Any]]:
    """
    Reads a video from a file, returning both the video frames and the audio frames

    Args:
        filename (str): path to the video file
        start_pts (int if pts_unit = 'pts', float / Fraction if pts_unit = 'sec', optional):
            The start presentation time of the video
        end_pts (int if pts_unit = 'pts', float / Fraction if pts_unit = 'sec', optional):
            The end presentation time
        pts_unit (str, optional): unit in which start_pts and end_pts values will be interpreted,
            either 'pts' or 'sec'. Defaults to 'pts'.
        output_format (str, optional): The format of the output video tensors. Can be either "THWC" (default) or "TCHW".

    Returns:
        vframes (Tensor[T, H, W, C] or Tensor[T, C, H, W]): the `T` video frames
        aframes (Tensor[K, L]): the audio frames, where `K` is the number of channels and `L` is the number of points
        info (Dict): metadata for the video and audio. Can contain the fields video_fps (float) and audio_fps (int)
    """

    output_format = output_format.upper()
    if output_format not in ("THWC", "TCHW"):
        raise ValueError(f"output_format should be either 'THWC' or 'TCHW', got {output_format}.")

    _check_av_available()

    if end_pts is None:
        end_pts = float("inf")

    if end_pts < start_pts:
        raise ValueError(f"end_pts should be larger than start_pts, got start_pts={start_pts} and end_pts={end_pts}")

    info = {}
    audio_frames = []
    audio_timebase = _video_opt.default_timebase

    with av.open(filename, metadata_errors="ignore") as container:
        if container.streams.audio:
            audio_timebase = container.streams.audio[0].time_base
        if container.streams.video:
            video_frames = _read_from_stream(
                container,
                start_pts,
                end_pts,
                pts_unit,
                container.streams.video[0],
                {"video": 0},
            )
            video_fps = container.streams.video[0].average_rate
            # guard against potentially corrupted files
            if video_fps is not None:
                info["video_fps"] = float(video_fps)

        if container.streams.audio:
            audio_frames = _read_from_stream(
                container,
                start_pts,
                end_pts,
                pts_unit,
                container.streams.audio[0],
                {"audio": 0},
            )
            info["audio_fps"] = container.streams.audio[0].rate

    aframes_list = [frame.to_ndarray() for frame in audio_frames]

    vframes = torch.empty((0, 1, 1, 3), dtype=torch.uint8)

    if aframes_list:
        aframes = np.concatenate(aframes_list, 1)
        aframes = torch.as_tensor(aframes)
        if pts_unit == "sec":
            start_pts = int(math.floor(start_pts * (1 / audio_timebase)))
            if end_pts != float("inf"):
                end_pts = int(math.ceil(end_pts * (1 / audio_timebase)))
        aframes = _align_audio_frames(aframes, audio_frames, start_pts, end_pts)
    else:
        aframes = torch.empty((1, 0), dtype=torch.float32)

    if output_format == "TCHW":
        # [T,H,W,C] --> [T,C,H,W]
        vframes = vframes.permute(0, 3, 1, 2)

    return vframes, aframes, info


def resize_for_rectangle_crop(arr, image_size, reshape_mode="random"):
    if arr.shape[3] / arr.shape[2] > image_size[1] / image_size[0]:
        arr = resize(
            arr,
            size=[image_size[0], int(arr.shape[3] * image_size[0] / arr.shape[2])],
            interpolation=InterpolationMode.BICUBIC,
        )
    else:
        arr = resize(
            arr,
            size=[int(arr.shape[2] * image_size[1] / arr.shape[3]), image_size[1]],
            interpolation=InterpolationMode.BICUBIC,
        )

    h, w = arr.shape[2], arr.shape[3]
    arr = arr.squeeze(0)

    delta_h = h - image_size[0]
    delta_w = w - image_size[1]

    if reshape_mode == "random" or reshape_mode == "none":
        top = np.random.randint(0, delta_h + 1)
        left = np.random.randint(0, delta_w + 1)
    elif reshape_mode == "center":
        top, left = delta_h // 2, delta_w // 2
    else:
        raise NotImplementedError
    arr = TT.functional.crop(arr, top=top, left=left, height=image_size[0], width=image_size[1])
    return arr


def pad_last_frame(tensor, num_frames):
    # T, H, W, C
    if tensor.shape[0] < num_frames:
        last_frame = tensor[-int(num_frames - tensor.shape[1]) :]
        padded_tensor = torch.cat([tensor, last_frame], dim=0)
        return padded_tensor
    else:
        return tensor[:num_frames]


def load_video(
    video_data,
    sampling="uniform",
    duration=None,
    num_frames=4,
    wanted_fps=None,
    actual_fps=None,
    skip_frms_num=0.0,
    nb_read_frames=None,
):
    decord.bridge.set_bridge("torch")
    vr = VideoReader(uri=video_data, height=-1, width=-1)
    if nb_read_frames is not None:
        ori_vlen = nb_read_frames
    else:
        ori_vlen = min(int(duration * actual_fps) - 1, len(vr))

    max_seek = int(ori_vlen - skip_frms_num - num_frames / wanted_fps * actual_fps)
    start = random.randint(skip_frms_num, max_seek + 1)
    end = int(start + num_frames / wanted_fps * actual_fps)
    n_frms = num_frames

    if sampling == "uniform":
        indices = np.arange(start, end, (end - start) / n_frms).astype(int)
    else:
        raise NotImplementedError

    # get_batch -> T, H, W, C
    temp_frms = vr.get_batch(np.arange(start, end))
    assert temp_frms is not None
    tensor_frms = torch.from_numpy(temp_frms) if type(temp_frms) is not torch.Tensor else temp_frms
    tensor_frms = tensor_frms[torch.tensor((indices - start).tolist())]

    return pad_last_frame(tensor_frms, num_frames)


import threading


def load_video_with_timeout(*args, **kwargs):
    video_container = {}

    def target_function():
        video = load_video(*args, **kwargs)
        video_container["video"] = video

    thread = threading.Thread(target=target_function)
    thread.start()
    timeout = 20
    thread.join(timeout)

    if thread.is_alive():
        print("Loading video timed out")
        raise TimeoutError
    return video_container.get("video", None).contiguous()


def process_video(
    video_path,
    image_size=None,
    duration=None,
    num_frames=4,
    wanted_fps=None,
    actual_fps=None,
    skip_frms_num=0.0,
    nb_read_frames=None,
):
    """
    video_path: str or io.BytesIO
    image_size: .
    duration: preknow the duration to speed up by seeking to sampled start. TODO by_pass if unknown.
    num_frames: wanted num_frames.
    wanted_fps: .
    skip_frms_num: ignore the first and the last xx frames, avoiding transitions.
    """

    video = load_video_with_timeout(
        video_path,
        duration=duration,
        num_frames=num_frames,
        wanted_fps=wanted_fps,
        actual_fps=actual_fps,
        skip_frms_num=skip_frms_num,
        nb_read_frames=nb_read_frames,
    )

    # --- copy and modify the image process ---
    video = video.permute(0, 3, 1, 2)  # [T, C, H, W]

    # resize
    if image_size is not None:
        video = resize_for_rectangle_crop(video, image_size, reshape_mode="center")

    return video


def process_fn_video(src, image_size, fps, num_frames, skip_frms_num=0.0, txt_key="caption"):
    while True:
        r = next(src)
        if "mp4" in r:
            video_data = r["mp4"]
        elif "avi" in r:
            video_data = r["avi"]
        else:
            print("No video data found")
            continue

        if txt_key not in r:
            txt = ""
        else:
            txt = r[txt_key]

        if isinstance(txt, bytes):
            txt = txt.decode("utf-8")
        else:
            txt = str(txt)

        duration = r.get("duration", None)
        if duration is not None:
            duration = float(duration)
        else:
            continue

        actual_fps = r.get("fps", None)
        if actual_fps is not None:
            actual_fps = float(actual_fps)
        else:
            continue

        required_frames = num_frames / fps * actual_fps + 2 * skip_frms_num
        required_duration = num_frames / fps + 2 * skip_frms_num / actual_fps

        if duration is not None and duration < required_duration:
            continue

        try:
            frames = process_video(
                io.BytesIO(video_data),
                num_frames=num_frames,
                wanted_fps=fps,
                image_size=image_size,
                duration=duration,
                actual_fps=actual_fps,
                skip_frms_num=skip_frms_num,
            )
            frames = (frames - 127.5) / 127.5
        except Exception as e:
            print(e)
            continue

        item = {
            "mp4": frames,
            "txt": txt,
            "num_frames": num_frames,
            "fps": fps,
        }

        yield item


class VideoDataset(MetaDistributedWebDataset):
    def __init__(
        self,
        path,
        image_size,
        num_frames,
        fps,
        skip_frms_num=0.0,
        nshards=sys.maxsize,
        seed=1,
        meta_names=None,
        shuffle_buffer=1000,
        include_dirs=None,
        txt_key="caption",
        **kwargs,
    ):
        if seed == -1:
            seed = random.randint(0, 1000000)
        if meta_names is None:
            meta_names = []

        if path.startswith(";"):
            path, include_dirs = path.split(";", 1)
        super().__init__(
            path,
            partial(
                process_fn_video, num_frames=num_frames, image_size=image_size, fps=fps, skip_frms_num=skip_frms_num
            ),
            seed,
            meta_names=meta_names,
            shuffle_buffer=shuffle_buffer,
            nshards=nshards,
            include_dirs=include_dirs,
        )

    @classmethod
    def create_dataset_function(cls, path, args, **kwargs):
        return cls(path, **kwargs)


class SFTDataset(Dataset):
    def __init__(self, data_dir, video_size, fps, max_num_frames, skip_frms_num=3):
        """
        skip_frms_num: ignore the first and the last xx frames, avoiding transitions.
        """
        super(SFTDataset, self).__init__()

        self.videos_list = []
        self.captions_list = []
        self.num_frames_list = []
        self.fps_list = []

        decord.bridge.set_bridge("torch")
        for root, dirnames, filenames in os.walk(data_dir):
            for filename in filenames:
                if filename.endswith(".mp4"):
                    video_path = os.path.join(root, filename)
                    vr = VideoReader(uri=video_path, height=-1, width=-1)
                    actual_fps = vr.get_avg_fps()
                    ori_vlen = len(vr)

                    if ori_vlen / actual_fps * fps > max_num_frames:
                        num_frames = max_num_frames
                        start = int(skip_frms_num)
                        end = int(start + num_frames / fps * actual_fps)
                        indices = np.arange(start, end, (end - start) / num_frames).astype(int)
                        temp_frms = vr.get_batch(np.arange(start, end))
                        assert temp_frms is not None
                        tensor_frms = torch.from_numpy(temp_frms) if type(temp_frms) is not torch.Tensor else temp_frms
                        tensor_frms = tensor_frms[torch.tensor((indices - start).tolist())]
                    else:
                        if ori_vlen > max_num_frames:
                            num_frames = max_num_frames
                            start = int(skip_frms_num)
                            end = int(ori_vlen - skip_frms_num)
                            indices = np.arange(start, end, (end - start) / num_frames).astype(int)
                            temp_frms = vr.get_batch(np.arange(start, end))
                            assert temp_frms is not None
                            tensor_frms = (
                                torch.from_numpy(temp_frms) if type(temp_frms) is not torch.Tensor else temp_frms
                            )
                            tensor_frms = tensor_frms[torch.tensor((indices - start).tolist())]
                        else:

                            def nearest_smaller_4k_plus_1(n):
                                remainder = n % 4
                                if remainder == 0:
                                    return n - 3
                                else:
                                    return n - remainder + 1

                            start = int(skip_frms_num)
                            end = int(ori_vlen - skip_frms_num)
                            num_frames = nearest_smaller_4k_plus_1(
                                end - start
                            )  # 3D VAE requires the number of frames to be 4k+1
                            end = int(start + num_frames)
                            temp_frms = vr.get_batch(np.arange(start, end))
                            assert temp_frms is not None
                            tensor_frms = (
                                torch.from_numpy(temp_frms) if type(temp_frms) is not torch.Tensor else temp_frms
                            )

                    tensor_frms = pad_last_frame(
                        tensor_frms, num_frames
                    )  # the len of indices may be less than num_frames, due to round error
                    tensor_frms = tensor_frms.permute(0, 3, 1, 2)  # [T, H, W, C] -> [T, C, H, W]
                    tensor_frms = resize_for_rectangle_crop(tensor_frms, video_size, reshape_mode="center")
                    tensor_frms = (tensor_frms - 127.5) / 127.5
                    self.videos_list.append(tensor_frms)

                    # caption
                    caption_path = os.path.join(root, filename.replace("videos", "labels").replace(".mp4", ".txt"))
                    if os.path.exists(caption_path):
                        caption = open(caption_path, "r").read().splitlines()[0]
                    else:
                        caption = ""
                    self.captions_list.append(caption)
                    self.num_frames_list.append(num_frames)
                    self.fps_list.append(fps)

    def __getitem__(self, index):
        item = {
            "mp4": self.videos_list[index],
            "txt": self.captions_list[index],
            "num_frames": self.num_frames_list[index],
            "fps": self.fps_list[index],
        }
        return item

    def __len__(self):
        return len(self.fps_list)

    @classmethod
    def create_dataset_function(cls, path, args, **kwargs):
        return cls(data_dir=path, **kwargs)