Spaces:
Paused
Paused
make gr.State individual
Browse files
app.py
CHANGED
|
@@ -90,16 +90,22 @@ def get_video_fps(video_path):
|
|
| 90 |
return fps
|
| 91 |
|
| 92 |
|
| 93 |
-
def reset(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
predictor.to("cpu")
|
| 95 |
-
|
| 96 |
-
|
| 97 |
|
| 98 |
-
session_id = id(session_state)
|
| 99 |
if global_inference_states[session_id] is not None:
|
| 100 |
predictor.reset_state(global_inference_states[session_id])
|
| 101 |
-
|
| 102 |
-
|
| 103 |
global_inference_states[session_id] = None
|
| 104 |
return (
|
| 105 |
None,
|
|
@@ -107,26 +113,38 @@ def reset():
|
|
| 107 |
None,
|
| 108 |
None,
|
| 109 |
gr.update(value=None, visible=False),
|
| 110 |
-
|
|
|
|
|
|
|
|
|
|
| 111 |
)
|
| 112 |
|
| 113 |
|
| 114 |
-
def clear_points(
|
|
|
|
| 115 |
predictor.to("cpu")
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
session_id = id(session_state)
|
| 119 |
if global_inference_states[session_id]["tracking_has_started"]:
|
| 120 |
predictor.reset_state(global_inference_states[session_id])
|
| 121 |
return (
|
| 122 |
-
|
| 123 |
None,
|
| 124 |
gr.update(value=None, visible=False),
|
| 125 |
-
|
|
|
|
| 126 |
)
|
| 127 |
|
| 128 |
|
| 129 |
-
def preprocess_video_in(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
predictor.to("cpu")
|
| 131 |
if video_path is None:
|
| 132 |
return (
|
|
@@ -134,7 +152,10 @@ def preprocess_video_in(video_path, session_state):
|
|
| 134 |
None, # points_map
|
| 135 |
None, # output_image
|
| 136 |
gr.update(value=None, visible=False), # output_video
|
| 137 |
-
|
|
|
|
|
|
|
|
|
|
| 138 |
)
|
| 139 |
|
| 140 |
# Read the first frame
|
|
@@ -146,7 +167,10 @@ def preprocess_video_in(video_path, session_state):
|
|
| 146 |
None, # points_map
|
| 147 |
None, # output_image
|
| 148 |
gr.update(value=None, visible=False), # output_video
|
| 149 |
-
|
|
|
|
|
|
|
|
|
|
| 150 |
)
|
| 151 |
|
| 152 |
frame_number = 0
|
|
@@ -169,46 +193,51 @@ def preprocess_video_in(video_path, session_state):
|
|
| 169 |
frame_number += 1
|
| 170 |
|
| 171 |
cap.release()
|
| 172 |
-
|
| 173 |
-
|
| 174 |
|
| 175 |
-
session_id = id(session_state)
|
| 176 |
global_inference_states[session_id] = predictor.init_state(video_path=video_path)
|
| 177 |
|
| 178 |
-
|
| 179 |
-
|
| 180 |
|
| 181 |
return [
|
| 182 |
gr.update(open=False), # video_in_drawer
|
| 183 |
first_frame, # points_map
|
| 184 |
None, # output_image
|
| 185 |
gr.update(value=None, visible=False), # output_video
|
| 186 |
-
|
|
|
|
|
|
|
|
|
|
| 187 |
]
|
| 188 |
|
| 189 |
|
| 190 |
@spaces.GPU
|
| 191 |
def segment_with_points(
|
| 192 |
point_type,
|
| 193 |
-
|
|
|
|
| 194 |
evt: gr.SelectData,
|
|
|
|
| 195 |
):
|
|
|
|
| 196 |
if torch.cuda.get_device_properties(0).major >= 8:
|
| 197 |
torch.backends.cuda.matmul.allow_tf32 = True
|
| 198 |
torch.backends.cudnn.allow_tf32 = True
|
| 199 |
with torch.autocast(device_type="cuda", dtype=torch.bfloat16):
|
| 200 |
predictor.to("cuda")
|
| 201 |
-
|
| 202 |
-
print(f"TRACKING INPUT POINT: {
|
| 203 |
|
| 204 |
if point_type == "include":
|
| 205 |
-
|
| 206 |
elif point_type == "exclude":
|
| 207 |
-
|
| 208 |
-
print(f"TRACKING INPUT LABEL: {
|
| 209 |
|
| 210 |
# Open the image and get its dimensions
|
| 211 |
-
transparent_background
|
| 212 |
"RGBA"
|
| 213 |
)
|
| 214 |
w, h = transparent_background.size
|
|
@@ -220,8 +249,8 @@ def segment_with_points(
|
|
| 220 |
# Create a transparent layer to draw on
|
| 221 |
transparent_layer = np.zeros((h, w, 4), dtype=np.uint8)
|
| 222 |
|
| 223 |
-
for index, track in enumerate(
|
| 224 |
-
if
|
| 225 |
cv2.circle(transparent_layer, track, radius, (0, 255, 0, 255), -1)
|
| 226 |
else:
|
| 227 |
cv2.circle(transparent_layer, track, radius, (255, 0, 0, 255), -1)
|
|
@@ -233,10 +262,9 @@ def segment_with_points(
|
|
| 233 |
)
|
| 234 |
|
| 235 |
# Let's add a positive click at (x, y) = (210, 350) to get started
|
| 236 |
-
points = np.array(
|
| 237 |
# for labels, `1` means positive click and `0` means negative click
|
| 238 |
-
labels = np.array(
|
| 239 |
-
session_id = id(session_state)
|
| 240 |
_, _, out_mask_logits = predictor.add_new_points(
|
| 241 |
inference_state=global_inference_states[session_id],
|
| 242 |
frame_idx=0,
|
|
@@ -249,7 +277,7 @@ def segment_with_points(
|
|
| 249 |
first_frame_output = Image.alpha_composite(transparent_background, mask_image)
|
| 250 |
|
| 251 |
torch.cuda.empty_cache()
|
| 252 |
-
return selected_point_map, first_frame_output,
|
| 253 |
|
| 254 |
|
| 255 |
def show_mask(mask, obj_id=None, random_color=False, convert_to_image=True):
|
|
@@ -270,23 +298,21 @@ def show_mask(mask, obj_id=None, random_color=False, convert_to_image=True):
|
|
| 270 |
@spaces.GPU
|
| 271 |
def propagate_to_all(
|
| 272 |
video_in,
|
| 273 |
-
|
|
|
|
| 274 |
):
|
|
|
|
| 275 |
predictor.to("cuda")
|
| 276 |
if torch.cuda.get_device_properties(0).major >= 8:
|
| 277 |
torch.backends.cuda.matmul.allow_tf32 = True
|
| 278 |
torch.backends.cudnn.allow_tf32 = True
|
| 279 |
with torch.autocast(device_type="cuda", dtype=torch.bfloat16):
|
| 280 |
-
session_id = id(session_state)
|
| 281 |
if (
|
| 282 |
-
len(
|
| 283 |
or video_in is None
|
| 284 |
or global_inference_states[session_id] is None
|
| 285 |
):
|
| 286 |
-
return
|
| 287 |
-
None,
|
| 288 |
-
session_state,
|
| 289 |
-
)
|
| 290 |
|
| 291 |
# run propagation throughout the video and collect the results in a dict
|
| 292 |
video_segments = (
|
|
@@ -307,7 +333,7 @@ def propagate_to_all(
|
|
| 307 |
output_frames = []
|
| 308 |
for out_frame_idx in range(0, len(video_segments), vis_frame_stride):
|
| 309 |
transparent_background = Image.fromarray(
|
| 310 |
-
|
| 311 |
).convert("RGBA")
|
| 312 |
out_mask = video_segments[out_frame_idx][OBJ_ID]
|
| 313 |
mask_image = show_mask(out_mask)
|
|
@@ -331,10 +357,7 @@ def propagate_to_all(
|
|
| 331 |
# Write the result to a file
|
| 332 |
clip.write_videofile(final_vid_output_path, codec="libx264")
|
| 333 |
|
| 334 |
-
return (
|
| 335 |
-
gr.update(value=final_vid_output_path),
|
| 336 |
-
session_state,
|
| 337 |
-
)
|
| 338 |
|
| 339 |
|
| 340 |
def update_ui():
|
|
@@ -342,14 +365,10 @@ def update_ui():
|
|
| 342 |
|
| 343 |
|
| 344 |
with gr.Blocks() as demo:
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
"input_points": [],
|
| 350 |
-
"input_labels": [],
|
| 351 |
-
}
|
| 352 |
-
)
|
| 353 |
|
| 354 |
with gr.Column():
|
| 355 |
# Title
|
|
@@ -399,14 +418,20 @@ with gr.Blocks() as demo:
|
|
| 399 |
fn=preprocess_video_in,
|
| 400 |
inputs=[
|
| 401 |
video_in,
|
| 402 |
-
|
|
|
|
|
|
|
|
|
|
| 403 |
],
|
| 404 |
outputs=[
|
| 405 |
video_in_drawer, # Accordion to hide uploaded video player
|
| 406 |
points_map, # Image component where we add new tracking points
|
| 407 |
output_image,
|
| 408 |
output_video,
|
| 409 |
-
|
|
|
|
|
|
|
|
|
|
| 410 |
],
|
| 411 |
queue=False,
|
| 412 |
)
|
|
@@ -415,14 +440,20 @@ with gr.Blocks() as demo:
|
|
| 415 |
fn=preprocess_video_in,
|
| 416 |
inputs=[
|
| 417 |
video_in,
|
| 418 |
-
|
|
|
|
|
|
|
|
|
|
| 419 |
],
|
| 420 |
outputs=[
|
| 421 |
video_in_drawer, # Accordion to hide uploaded video player
|
| 422 |
points_map, # Image component where we add new tracking points
|
| 423 |
output_image,
|
| 424 |
output_video,
|
| 425 |
-
|
|
|
|
|
|
|
|
|
|
| 426 |
],
|
| 427 |
queue=False,
|
| 428 |
)
|
|
@@ -432,12 +463,14 @@ with gr.Blocks() as demo:
|
|
| 432 |
fn=segment_with_points,
|
| 433 |
inputs=[
|
| 434 |
point_type, # "include" or "exclude"
|
| 435 |
-
|
|
|
|
| 436 |
],
|
| 437 |
outputs=[
|
| 438 |
points_map, # updated image with points
|
| 439 |
output_image,
|
| 440 |
-
|
|
|
|
| 441 |
],
|
| 442 |
queue=False,
|
| 443 |
)
|
|
@@ -445,26 +478,38 @@ with gr.Blocks() as demo:
|
|
| 445 |
# Clear every points clicked and added to the map
|
| 446 |
clear_points_btn.click(
|
| 447 |
fn=clear_points,
|
| 448 |
-
inputs=
|
|
|
|
|
|
|
|
|
|
| 449 |
outputs=[
|
| 450 |
points_map,
|
| 451 |
output_image,
|
| 452 |
output_video,
|
| 453 |
-
|
|
|
|
| 454 |
],
|
| 455 |
queue=False,
|
| 456 |
)
|
| 457 |
|
| 458 |
reset_btn.click(
|
| 459 |
fn=reset,
|
| 460 |
-
inputs=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 461 |
outputs=[
|
| 462 |
video_in,
|
| 463 |
video_in_drawer,
|
| 464 |
points_map,
|
| 465 |
output_image,
|
| 466 |
output_video,
|
| 467 |
-
|
|
|
|
|
|
|
|
|
|
| 468 |
],
|
| 469 |
queue=False,
|
| 470 |
)
|
|
@@ -478,11 +523,10 @@ with gr.Blocks() as demo:
|
|
| 478 |
fn=propagate_to_all,
|
| 479 |
inputs=[
|
| 480 |
video_in,
|
| 481 |
-
|
| 482 |
],
|
| 483 |
outputs=[
|
| 484 |
output_video,
|
| 485 |
-
session_state,
|
| 486 |
],
|
| 487 |
concurrency_limit=10,
|
| 488 |
queue=False,
|
|
|
|
| 90 |
return fps
|
| 91 |
|
| 92 |
|
| 93 |
+
def reset(
|
| 94 |
+
session_first_frame,
|
| 95 |
+
session_all_frames,
|
| 96 |
+
session_input_points,
|
| 97 |
+
session_input_labels,
|
| 98 |
+
request: gr.Request,
|
| 99 |
+
):
|
| 100 |
+
session_id = request.session_id
|
| 101 |
predictor.to("cpu")
|
| 102 |
+
session_input_points = []
|
| 103 |
+
session_input_labels = []
|
| 104 |
|
|
|
|
| 105 |
if global_inference_states[session_id] is not None:
|
| 106 |
predictor.reset_state(global_inference_states[session_id])
|
| 107 |
+
session_first_frame = None
|
| 108 |
+
session_all_frames = None
|
| 109 |
global_inference_states[session_id] = None
|
| 110 |
return (
|
| 111 |
None,
|
|
|
|
| 113 |
None,
|
| 114 |
None,
|
| 115 |
gr.update(value=None, visible=False),
|
| 116 |
+
session_first_frame,
|
| 117 |
+
session_all_frames,
|
| 118 |
+
session_input_points,
|
| 119 |
+
session_input_labels,
|
| 120 |
)
|
| 121 |
|
| 122 |
|
| 123 |
+
def clear_points(session_input_points, session_input_labels, request: gr.Request,):
|
| 124 |
+
session_id = request.session_id
|
| 125 |
predictor.to("cpu")
|
| 126 |
+
session_input_points = []
|
| 127 |
+
session_input_labels = []
|
|
|
|
| 128 |
if global_inference_states[session_id]["tracking_has_started"]:
|
| 129 |
predictor.reset_state(global_inference_states[session_id])
|
| 130 |
return (
|
| 131 |
+
session_first_frame,
|
| 132 |
None,
|
| 133 |
gr.update(value=None, visible=False),
|
| 134 |
+
session_input_points,
|
| 135 |
+
session_input_labels,
|
| 136 |
)
|
| 137 |
|
| 138 |
|
| 139 |
+
def preprocess_video_in(
|
| 140 |
+
video_path,
|
| 141 |
+
session_first_frame,
|
| 142 |
+
session_all_frames,
|
| 143 |
+
session_input_points,
|
| 144 |
+
session_input_labels,
|
| 145 |
+
request: gr.Request,
|
| 146 |
+
):
|
| 147 |
+
session_id = request.session_id
|
| 148 |
predictor.to("cpu")
|
| 149 |
if video_path is None:
|
| 150 |
return (
|
|
|
|
| 152 |
None, # points_map
|
| 153 |
None, # output_image
|
| 154 |
gr.update(value=None, visible=False), # output_video
|
| 155 |
+
session_first_frame,
|
| 156 |
+
session_all_frames,
|
| 157 |
+
session_input_points,
|
| 158 |
+
session_input_labels,
|
| 159 |
)
|
| 160 |
|
| 161 |
# Read the first frame
|
|
|
|
| 167 |
None, # points_map
|
| 168 |
None, # output_image
|
| 169 |
gr.update(value=None, visible=False), # output_video
|
| 170 |
+
session_first_frame,
|
| 171 |
+
session_all_frames,
|
| 172 |
+
session_input_points,
|
| 173 |
+
session_input_labels,
|
| 174 |
)
|
| 175 |
|
| 176 |
frame_number = 0
|
|
|
|
| 193 |
frame_number += 1
|
| 194 |
|
| 195 |
cap.release()
|
| 196 |
+
session_first_frame = copy.deepcopy(first_frame)
|
| 197 |
+
session_all_frames = all_frames
|
| 198 |
|
|
|
|
| 199 |
global_inference_states[session_id] = predictor.init_state(video_path=video_path)
|
| 200 |
|
| 201 |
+
session_input_points = []
|
| 202 |
+
session_input_labels = []
|
| 203 |
|
| 204 |
return [
|
| 205 |
gr.update(open=False), # video_in_drawer
|
| 206 |
first_frame, # points_map
|
| 207 |
None, # output_image
|
| 208 |
gr.update(value=None, visible=False), # output_video
|
| 209 |
+
session_first_frame,
|
| 210 |
+
session_all_frames,
|
| 211 |
+
session_input_points,
|
| 212 |
+
session_input_labels,
|
| 213 |
]
|
| 214 |
|
| 215 |
|
| 216 |
@spaces.GPU
|
| 217 |
def segment_with_points(
|
| 218 |
point_type,
|
| 219 |
+
session_input_points,
|
| 220 |
+
session_input_labels,
|
| 221 |
evt: gr.SelectData,
|
| 222 |
+
request: gr.Request,
|
| 223 |
):
|
| 224 |
+
session_id = request.session_id
|
| 225 |
if torch.cuda.get_device_properties(0).major >= 8:
|
| 226 |
torch.backends.cuda.matmul.allow_tf32 = True
|
| 227 |
torch.backends.cudnn.allow_tf32 = True
|
| 228 |
with torch.autocast(device_type="cuda", dtype=torch.bfloat16):
|
| 229 |
predictor.to("cuda")
|
| 230 |
+
session_input_points.append(evt.index)
|
| 231 |
+
print(f"TRACKING INPUT POINT: {session_input_points}")
|
| 232 |
|
| 233 |
if point_type == "include":
|
| 234 |
+
session_input_labels.append(1)
|
| 235 |
elif point_type == "exclude":
|
| 236 |
+
session_input_labels.append(0)
|
| 237 |
+
print(f"TRACKING INPUT LABEL: {session_input_labels}")
|
| 238 |
|
| 239 |
# Open the image and get its dimensions
|
| 240 |
+
transparent_background Image.fromarray(session_first_frame).convert(
|
| 241 |
"RGBA"
|
| 242 |
)
|
| 243 |
w, h = transparent_background.size
|
|
|
|
| 249 |
# Create a transparent layer to draw on
|
| 250 |
transparent_layer = np.zeros((h, w, 4), dtype=np.uint8)
|
| 251 |
|
| 252 |
+
for index, track in enumerate(session_input_points):
|
| 253 |
+
if session_input_labels[index] == 1:
|
| 254 |
cv2.circle(transparent_layer, track, radius, (0, 255, 0, 255), -1)
|
| 255 |
else:
|
| 256 |
cv2.circle(transparent_layer, track, radius, (255, 0, 0, 255), -1)
|
|
|
|
| 262 |
)
|
| 263 |
|
| 264 |
# Let's add a positive click at (x, y) = (210, 350) to get started
|
| 265 |
+
points = np.array(session_input_points, dtype=np.float32)
|
| 266 |
# for labels, `1` means positive click and `0` means negative click
|
| 267 |
+
labels = np.array(session_input_labels, dtype=np.int32)
|
|
|
|
| 268 |
_, _, out_mask_logits = predictor.add_new_points(
|
| 269 |
inference_state=global_inference_states[session_id],
|
| 270 |
frame_idx=0,
|
|
|
|
| 277 |
first_frame_output = Image.alpha_composite(transparent_background, mask_image)
|
| 278 |
|
| 279 |
torch.cuda.empty_cache()
|
| 280 |
+
return selected_point_map, first_frame_output, session_input_points, session_input_labels
|
| 281 |
|
| 282 |
|
| 283 |
def show_mask(mask, obj_id=None, random_color=False, convert_to_image=True):
|
|
|
|
| 298 |
@spaces.GPU
|
| 299 |
def propagate_to_all(
|
| 300 |
video_in,
|
| 301 |
+
session_all_frames,
|
| 302 |
+
request: gr.Request,
|
| 303 |
):
|
| 304 |
+
session_id = request.session_id
|
| 305 |
predictor.to("cuda")
|
| 306 |
if torch.cuda.get_device_properties(0).major >= 8:
|
| 307 |
torch.backends.cuda.matmul.allow_tf32 = True
|
| 308 |
torch.backends.cudnn.allow_tf32 = True
|
| 309 |
with torch.autocast(device_type="cuda", dtype=torch.bfloat16):
|
|
|
|
| 310 |
if (
|
| 311 |
+
len (session_input_points) == 0
|
| 312 |
or video_in is None
|
| 313 |
or global_inference_states[session_id] is None
|
| 314 |
):
|
| 315 |
+
return None
|
|
|
|
|
|
|
|
|
|
| 316 |
|
| 317 |
# run propagation throughout the video and collect the results in a dict
|
| 318 |
video_segments = (
|
|
|
|
| 333 |
output_frames = []
|
| 334 |
for out_frame_idx in range(0, len(video_segments), vis_frame_stride):
|
| 335 |
transparent_background = Image.fromarray(
|
| 336 |
+
session_all_frames[out_frame_idx]
|
| 337 |
).convert("RGBA")
|
| 338 |
out_mask = video_segments[out_frame_idx][OBJ_ID]
|
| 339 |
mask_image = show_mask(out_mask)
|
|
|
|
| 357 |
# Write the result to a file
|
| 358 |
clip.write_videofile(final_vid_output_path, codec="libx264")
|
| 359 |
|
| 360 |
+
return gr.update(value=final_vid_output_path)
|
|
|
|
|
|
|
|
|
|
| 361 |
|
| 362 |
|
| 363 |
def update_ui():
|
|
|
|
| 365 |
|
| 366 |
|
| 367 |
with gr.Blocks() as demo:
|
| 368 |
+
first_frame = gr.State(None)
|
| 369 |
+
all_frames = gr.State(None)
|
| 370 |
+
input_points = gr.State([])
|
| 371 |
+
input_labels = gr.State([])
|
|
|
|
|
|
|
|
|
|
|
|
|
| 372 |
|
| 373 |
with gr.Column():
|
| 374 |
# Title
|
|
|
|
| 418 |
fn=preprocess_video_in,
|
| 419 |
inputs=[
|
| 420 |
video_in,
|
| 421 |
+
first_frame,
|
| 422 |
+
all_frames,
|
| 423 |
+
input_points,
|
| 424 |
+
input_labels,
|
| 425 |
],
|
| 426 |
outputs=[
|
| 427 |
video_in_drawer, # Accordion to hide uploaded video player
|
| 428 |
points_map, # Image component where we add new tracking points
|
| 429 |
output_image,
|
| 430 |
output_video,
|
| 431 |
+
first_frame,
|
| 432 |
+
all_frames,
|
| 433 |
+
input_points,
|
| 434 |
+
input_labels,
|
| 435 |
],
|
| 436 |
queue=False,
|
| 437 |
)
|
|
|
|
| 440 |
fn=preprocess_video_in,
|
| 441 |
inputs=[
|
| 442 |
video_in,
|
| 443 |
+
first_frame,
|
| 444 |
+
all_frames,
|
| 445 |
+
input_points,
|
| 446 |
+
input_labels,
|
| 447 |
],
|
| 448 |
outputs=[
|
| 449 |
video_in_drawer, # Accordion to hide uploaded video player
|
| 450 |
points_map, # Image component where we add new tracking points
|
| 451 |
output_image,
|
| 452 |
output_video,
|
| 453 |
+
first_frame,
|
| 454 |
+
all_frames,
|
| 455 |
+
input_points,
|
| 456 |
+
input_labels,
|
| 457 |
],
|
| 458 |
queue=False,
|
| 459 |
)
|
|
|
|
| 463 |
fn=segment_with_points,
|
| 464 |
inputs=[
|
| 465 |
point_type, # "include" or "exclude"
|
| 466 |
+
input_points,
|
| 467 |
+
input_labels,
|
| 468 |
],
|
| 469 |
outputs=[
|
| 470 |
points_map, # updated image with points
|
| 471 |
output_image,
|
| 472 |
+
input_points,
|
| 473 |
+
input_labels,
|
| 474 |
],
|
| 475 |
queue=False,
|
| 476 |
)
|
|
|
|
| 478 |
# Clear every points clicked and added to the map
|
| 479 |
clear_points_btn.click(
|
| 480 |
fn=clear_points,
|
| 481 |
+
inputs=[
|
| 482 |
+
input_points,
|
| 483 |
+
input_labels,
|
| 484 |
+
],
|
| 485 |
outputs=[
|
| 486 |
points_map,
|
| 487 |
output_image,
|
| 488 |
output_video,
|
| 489 |
+
input_points,
|
| 490 |
+
input_labels,
|
| 491 |
],
|
| 492 |
queue=False,
|
| 493 |
)
|
| 494 |
|
| 495 |
reset_btn.click(
|
| 496 |
fn=reset,
|
| 497 |
+
inputs=[
|
| 498 |
+
first_frame,
|
| 499 |
+
all_frames,
|
| 500 |
+
input_points,
|
| 501 |
+
input_labels,
|
| 502 |
+
],
|
| 503 |
outputs=[
|
| 504 |
video_in,
|
| 505 |
video_in_drawer,
|
| 506 |
points_map,
|
| 507 |
output_image,
|
| 508 |
output_video,
|
| 509 |
+
first_frame,
|
| 510 |
+
all_frames,
|
| 511 |
+
input_points,
|
| 512 |
+
input_labels,
|
| 513 |
],
|
| 514 |
queue=False,
|
| 515 |
)
|
|
|
|
| 523 |
fn=propagate_to_all,
|
| 524 |
inputs=[
|
| 525 |
video_in,
|
| 526 |
+
all_frames,
|
| 527 |
],
|
| 528 |
outputs=[
|
| 529 |
output_video,
|
|
|
|
| 530 |
],
|
| 531 |
concurrency_limit=10,
|
| 532 |
queue=False,
|