Spaces:
Paused
Paused
move segment_with_points to CPU
Browse files- app.py +56 -77
- sam2/sam2_video_predictor.py +1 -1
app.py
CHANGED
|
@@ -246,7 +246,6 @@ def preprocess_video_in(
|
|
| 246 |
]
|
| 247 |
|
| 248 |
|
| 249 |
-
@spaces.GPU(duration=5)
|
| 250 |
def segment_with_points(
|
| 251 |
point_type,
|
| 252 |
first_frame,
|
|
@@ -256,68 +255,64 @@ def segment_with_points(
|
|
| 256 |
inference_state,
|
| 257 |
evt: gr.SelectData,
|
| 258 |
):
|
| 259 |
-
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device="
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
transparent_layer = Image.fromarray(transparent_layer, "RGBA")
|
| 292 |
-
selected_point_map = Image.alpha_composite(
|
| 293 |
-
transparent_background, transparent_layer
|
| 294 |
-
)
|
| 295 |
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
|
| 308 |
-
|
| 309 |
-
|
| 310 |
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
|
| 322 |
|
| 323 |
def show_mask(mask, obj_id=None, random_color=False, convert_to_image=True):
|
|
@@ -338,10 +333,8 @@ def show_mask(mask, obj_id=None, random_color=False, convert_to_image=True):
|
|
| 338 |
@spaces.GPU(duration=30)
|
| 339 |
def propagate_to_all(
|
| 340 |
video_in,
|
| 341 |
-
first_frame,
|
| 342 |
all_frames,
|
| 343 |
input_points,
|
| 344 |
-
input_labels,
|
| 345 |
inference_state,
|
| 346 |
):
|
| 347 |
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device="cuda")
|
|
@@ -394,14 +387,7 @@ def propagate_to_all(
|
|
| 394 |
# Write the result to a file
|
| 395 |
clip.write_videofile(final_vid_output_path, codec="libx264")
|
| 396 |
|
| 397 |
-
return (
|
| 398 |
-
gr.update(value=final_vid_output_path),
|
| 399 |
-
first_frame,
|
| 400 |
-
all_frames,
|
| 401 |
-
input_points,
|
| 402 |
-
input_labels,
|
| 403 |
-
inference_state,
|
| 404 |
-
)
|
| 405 |
|
| 406 |
|
| 407 |
def update_ui():
|
|
@@ -586,19 +572,12 @@ with gr.Blocks() as demo:
|
|
| 586 |
fn=propagate_to_all,
|
| 587 |
inputs=[
|
| 588 |
video_in,
|
| 589 |
-
first_frame,
|
| 590 |
all_frames,
|
| 591 |
input_points,
|
| 592 |
-
input_labels,
|
| 593 |
inference_state,
|
| 594 |
],
|
| 595 |
outputs=[
|
| 596 |
output_video,
|
| 597 |
-
first_frame,
|
| 598 |
-
all_frames,
|
| 599 |
-
input_points,
|
| 600 |
-
input_labels,
|
| 601 |
-
inference_state,
|
| 602 |
],
|
| 603 |
concurrency_limit=10,
|
| 604 |
queue=False,
|
|
|
|
| 246 |
]
|
| 247 |
|
| 248 |
|
|
|
|
| 249 |
def segment_with_points(
|
| 250 |
point_type,
|
| 251 |
first_frame,
|
|
|
|
| 255 |
inference_state,
|
| 256 |
evt: gr.SelectData,
|
| 257 |
):
|
| 258 |
+
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device="cpu")
|
| 259 |
+
input_points.append(evt.index)
|
| 260 |
+
print(f"TRACKING INPUT POINT: {input_points}")
|
| 261 |
+
|
| 262 |
+
if point_type == "include":
|
| 263 |
+
input_labels.append(1)
|
| 264 |
+
elif point_type == "exclude":
|
| 265 |
+
input_labels.append(0)
|
| 266 |
+
print(f"TRACKING INPUT LABEL: {input_labels}")
|
| 267 |
+
|
| 268 |
+
# Open the image and get its dimensions
|
| 269 |
+
transparent_background = Image.fromarray(first_frame).convert("RGBA")
|
| 270 |
+
w, h = transparent_background.size
|
| 271 |
+
|
| 272 |
+
# Define the circle radius as a fraction of the smaller dimension
|
| 273 |
+
fraction = 0.01 # You can adjust this value as needed
|
| 274 |
+
radius = int(fraction * min(w, h))
|
| 275 |
+
|
| 276 |
+
# Create a transparent layer to draw on
|
| 277 |
+
transparent_layer = np.zeros((h, w, 4), dtype=np.uint8)
|
| 278 |
+
|
| 279 |
+
for index, track in enumerate(input_points):
|
| 280 |
+
if input_labels[index] == 1:
|
| 281 |
+
cv2.circle(transparent_layer, track, radius, (0, 255, 0, 255), -1)
|
| 282 |
+
else:
|
| 283 |
+
cv2.circle(transparent_layer, track, radius, (255, 0, 0, 255), -1)
|
| 284 |
+
|
| 285 |
+
# Convert the transparent layer back to an image
|
| 286 |
+
transparent_layer = Image.fromarray(transparent_layer, "RGBA")
|
| 287 |
+
selected_point_map = Image.alpha_composite(
|
| 288 |
+
transparent_background, transparent_layer
|
| 289 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 290 |
|
| 291 |
+
# Let's add a positive click at (x, y) = (210, 350) to get started
|
| 292 |
+
points = np.array(input_points, dtype=np.float32)
|
| 293 |
+
# for labels, `1` means positive click and `0` means negative click
|
| 294 |
+
labels = np.array(input_labels, dtype=np.int32)
|
| 295 |
+
_, _, out_mask_logits = predictor.add_new_points(
|
| 296 |
+
inference_state=inference_state,
|
| 297 |
+
frame_idx=0,
|
| 298 |
+
obj_id=OBJ_ID,
|
| 299 |
+
points=points,
|
| 300 |
+
labels=labels,
|
| 301 |
+
)
|
| 302 |
|
| 303 |
+
mask_image = show_mask((out_mask_logits[0] > 0.0).cpu().numpy())
|
| 304 |
+
first_frame_output = Image.alpha_composite(transparent_background, mask_image)
|
| 305 |
|
| 306 |
+
torch.cuda.empty_cache()
|
| 307 |
+
return (
|
| 308 |
+
selected_point_map,
|
| 309 |
+
first_frame_output,
|
| 310 |
+
first_frame,
|
| 311 |
+
all_frames,
|
| 312 |
+
input_points,
|
| 313 |
+
input_labels,
|
| 314 |
+
inference_state,
|
| 315 |
+
)
|
| 316 |
|
| 317 |
|
| 318 |
def show_mask(mask, obj_id=None, random_color=False, convert_to_image=True):
|
|
|
|
| 333 |
@spaces.GPU(duration=30)
|
| 334 |
def propagate_to_all(
|
| 335 |
video_in,
|
|
|
|
| 336 |
all_frames,
|
| 337 |
input_points,
|
|
|
|
| 338 |
inference_state,
|
| 339 |
):
|
| 340 |
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device="cuda")
|
|
|
|
| 387 |
# Write the result to a file
|
| 388 |
clip.write_videofile(final_vid_output_path, codec="libx264")
|
| 389 |
|
| 390 |
+
return gr.update(value=final_vid_output_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 391 |
|
| 392 |
|
| 393 |
def update_ui():
|
|
|
|
| 572 |
fn=propagate_to_all,
|
| 573 |
inputs=[
|
| 574 |
video_in,
|
|
|
|
| 575 |
all_frames,
|
| 576 |
input_points,
|
|
|
|
| 577 |
inference_state,
|
| 578 |
],
|
| 579 |
outputs=[
|
| 580 |
output_video,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 581 |
],
|
| 582 |
concurrency_limit=10,
|
| 583 |
queue=False,
|
sam2/sam2_video_predictor.py
CHANGED
|
@@ -107,7 +107,7 @@ class SAM2VideoPredictor(SAM2Base):
|
|
| 107 |
inference_state["tracking_has_started"] = False
|
| 108 |
inference_state["frames_already_tracked"] = {}
|
| 109 |
# Warm up the visual backbone and cache the image feature on frame 0
|
| 110 |
-
|
| 111 |
return inference_state
|
| 112 |
|
| 113 |
@classmethod
|
|
|
|
| 107 |
inference_state["tracking_has_started"] = False
|
| 108 |
inference_state["frames_already_tracked"] = {}
|
| 109 |
# Warm up the visual backbone and cache the image feature on frame 0
|
| 110 |
+
self._get_image_feature(inference_state, frame_idx=0, batch_size=1)
|
| 111 |
return inference_state
|
| 112 |
|
| 113 |
@classmethod
|