Spaces:
Sleeping
Sleeping
File size: 1,094 Bytes
07eb8d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 |
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
# Load the fine-tuned EE LLM
model_name = "STEM-AI-mtl/phi-2-electrical-engineering"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
gen_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=256)
# Define function to generate answer
def generate_answer(question):
prompt = f"Answer this electronics engineering question:\n{question}\nAnswer:"
response = gen_pipeline(prompt, do_sample=True, temperature=0.7)[0]["generated_text"]
answer = response.split("Answer:")[-1].strip()
return answer
# Gradio UI
with gr.Blocks() as demo:
gr.Markdown("## 🤖 Ask Me Electronics Engineering Questions")
question = gr.Textbox(label="Your Question", placeholder="e.g. What is a BJT?")
output = gr.Textbox(label="AI Answer", lines=4)
button = gr.Button("Generate Answer")
button.click(generate_answer, inputs=question, outputs=output)
if __name__ == "__main__":
demo.launch()
|