Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -5,10 +5,11 @@ import spaces
|
|
5 |
import os
|
6 |
import numpy as np
|
7 |
import re
|
8 |
-
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
|
9 |
from speechbrain.pretrained import EncoderClassifier
|
10 |
from datasets import load_dataset
|
11 |
|
|
|
12 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
13 |
|
14 |
def load_models_and_data():
|
@@ -20,38 +21,17 @@ def load_models_and_data():
|
|
20 |
|
21 |
model = SpeechT5ForTextToSpeech.from_pretrained("fahadqazi/testts1234").to(device)
|
22 |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
23 |
-
|
24 |
-
spk_model_name = "speechbrain/spkrec-xvect-voxceleb"
|
25 |
-
speaker_model = EncoderClassifier.from_hparams(
|
26 |
-
source=spk_model_name,
|
27 |
-
run_opts={"device": device},
|
28 |
-
savedir=os.path.join("/tmp", spk_model_name),
|
29 |
-
)
|
30 |
-
|
31 |
-
# Load a sample from a dataset for default embedding
|
32 |
-
dataset = load_dataset("erenfazlioglu/turkishvoicedataset", split="train")
|
33 |
-
example = dataset[304]
|
34 |
-
|
35 |
-
return model, processor, vocoder, speaker_model, example
|
36 |
-
|
37 |
-
model, processor, vocoder, speaker_model, default_example = load_models_and_data()
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
# speaker_embeddings = speaker_model.encode_batch(torch.tensor(waveform).unsqueeze(0).to(device))
|
42 |
-
# speaker_embeddings = torch.nn.functional.normalize(speaker_embeddings, dim=2)
|
43 |
-
# speaker_embeddings = speaker_embeddings.squeeze()
|
44 |
-
# return speaker_embeddings
|
45 |
|
46 |
-
|
47 |
-
# audio = example["audio"]
|
48 |
-
# return create_speaker_embedding(audio["array"])
|
49 |
|
50 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
51 |
speaker_embeddings = embeddings_dataset[7306]["xvector"]
|
52 |
speaker_embeddings = torch.tensor(speaker_embeddings).to(device)
|
53 |
|
54 |
-
default_embedding = speaker_embeddings
|
55 |
|
56 |
# replacements = [
|
57 |
# ("â", "a"), # Long a
|
|
|
5 |
import os
|
6 |
import numpy as np
|
7 |
import re
|
8 |
+
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan, AutoTokenizer
|
9 |
from speechbrain.pretrained import EncoderClassifier
|
10 |
from datasets import load_dataset
|
11 |
|
12 |
+
|
13 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
|
15 |
def load_models_and_data():
|
|
|
21 |
|
22 |
model = SpeechT5ForTextToSpeech.from_pretrained("fahadqazi/testts1234").to(device)
|
23 |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
+
|
26 |
+
return model, processor, vocoder
|
|
|
|
|
|
|
|
|
27 |
|
28 |
+
model, processor, vocoder = load_models_and_data()
|
|
|
|
|
29 |
|
30 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
31 |
speaker_embeddings = embeddings_dataset[7306]["xvector"]
|
32 |
speaker_embeddings = torch.tensor(speaker_embeddings).to(device)
|
33 |
|
34 |
+
default_embedding = speaker_embeddings
|
35 |
|
36 |
# replacements = [
|
37 |
# ("â", "a"), # Long a
|