import gradio as gr import torch import soundfile as sf import spaces import os import numpy as np import re from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan, AutoTokenizer from speechbrain.pretrained import EncoderClassifier from datasets import load_dataset from huggingface_hub import hf_hub_download import uuid import wave import io import tempfile import shutil from piper import PiperVoice device = "cuda" if torch.cuda.is_available() else "cpu" auth_token = os.environ.get("hf_token") or True model_path = hf_hub_download(repo_id="fahadqazi/piper-sindhi", filename="model.onnx", use_auth_token=auth_token) config_path = hf_hub_download(repo_id="fahadqazi/piper-sindhi", filename="model.onnx.json", use_auth_token=auth_token) voice = PiperVoice.load(model_path=model_path, config_path=config_path, use_cuda=device=="cuda") synthesize_args = { "speaker_id": 0, "sentence_silence": 0.5 } # def load_models_and_data(): # auth_token = os.environ.get("hf_token") or True # model_name = "microsoft/speecht5_tts" # processor = SpeechT5Processor.from_pretrained(model_name) # tokenizer = AutoTokenizer.from_pretrained("fahadqazi/testts1234", use_auth_token=auth_token) # processor.tokenizer = tokenizer # model = SpeechT5ForTextToSpeech.from_pretrained("fahadqazi/testts1234", use_auth_token=auth_token).to(device) # vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device) # return model, processor, vocoder # model, processor, vocoder = load_models_and_data() # embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") # speaker_embeddings = embeddings_dataset[7306]["xvector"] # speaker_embeddings = torch.tensor(speaker_embeddings).to(device) # default_embedding = speaker_embeddings replacements = [ # ("۾", "مين"), # # ("۽", "ائين"), # ] number_words = { 0: "ٻڙي", 1: "هڪ", 2: "ٻہ", 3: "ٽي", 4: "چار", 5: "پنج", 6: "ڇه", 7: "ست", 8: "اٺ", 9: "نوه", 10: "ڏهہ", 11: "يارنهن", 12: "ٻارنهن", 13: "تيرنهن", 14: "چوڏنهن", 15: "پنڌرنهن", 16: "سورنهن", 17: "سترنهن", 18: "ارڙنهن", 19: "اوڻينهن", 20: "ويهہ", 30: "ٽيهہ", 40: "چاليهہ", 50: "پنجها", 60: "سٺ", 70: "ستر", 80: "اسي", 90: "نوي", 100: "سوه", 1000: "هزار" } def number_to_words(number): if number < 20: return number_words[number] elif number < 100: tens, unit = divmod(number, 10) return (number_words[unit] if unit else "") + (" " + number_words[tens * 10]) elif number < 1000: hundreds, remainder = divmod(number, 100) return (number_words[hundreds] + " سوه" if hundreds > 1 else "سوه") + (" " + number_to_words(remainder) if remainder else "") elif number < 1000000: thousands, remainder = divmod(number, 1000) return (number_to_words(thousands) + " هزار" if thousands > 1 else "هزار") + (" " + number_to_words(remainder) if remainder else "") elif number < 1000000000: millions, remainder = divmod(number, 1000000) return number_to_words(millions) + " ملين" + (" " + number_to_words(remainder) if remainder else "") elif number < 1000000000000: billions, remainder = divmod(number, 1000000000) return number_to_words(billions) + " بلين" + (" " + number_to_words(remainder) if remainder else "") else: return str(number) def replace_numbers_with_words(text): def replace(match): number = int(match.group()) return number_to_words(number) # Find the numbers and change with words. result = re.sub(r'\b\d+\b', replace, text) return result def normalize_text(text): # Convert to lowercase text = text.lower() # Replace numbers followed by "ع" with "عيسوي" text = re.sub(r'(\d+)\s*ع', r'\1 عيسوي', text) # Replace numbers with words text = replace_numbers_with_words(text) # Apply character replacements for old, new in replacements: text = text.replace(old, new) # # Remove punctuation # text = re.sub(r'[^\w\s]', '', text) return text @spaces.GPU(duration=60) def text_to_speech(text, audio_file=None): # Clear all outputs # yield gr.update(value=None), gr.update(value=None) # Normalize the input text normalized_text = normalize_text(text) print("Normalized text: ", normalized_text) # Split text while preserving "..." (ellipsis) segments = re.split(r'(\.\.\.|[\n.۔])', normalized_text) segments = [x.strip() for x in segments] #print("segments: ", segments) # Merge back the ellipsis with previous segment combined_segments = [] temp_segment = "" for segment in segments: if segment == '...': temp_segment += " ..." # Keep ellipsis as part of the previous segment elif segment in ['.', '\n', '۔']: if temp_segment: combined_segments.append(temp_segment.strip()) temp_segment = "" else: if temp_segment: combined_segments.append(temp_segment.strip()) temp_segment = segment if temp_segment: combined_segments.append(temp_segment.strip()) #print("combined_segments: ", combined_segments) # Silence lengths (50ms for '.', '\n', '۔', 150ms for '...') short_silence = np.zeros(int(22050 * 0.05), dtype=np.int16) # 50ms pause long_silence = np.zeros(int(22050 * 0.15), dtype=np.int16) # 150ms pause for "..." # Create a temporary directory for storing individual segment WAV files temp_dir = tempfile.mkdtemp() try: output_file = f"{uuid.uuid4()}.wav" # Open the final output WAV file with sf.SoundFile(output_file, 'w', samplerate=22050, channels=1, subtype='PCM_16') as output: # Synthesize and save each segment to a WAV file for i, segment in enumerate(combined_segments): segment_path = os.path.join(temp_dir, f"segment_{i}.wav") with wave.open(segment_path, "wb") as wav_file: voice.synthesize(segment, wav_file, **synthesize_args) # Read the segment and write it to the final output audio_segment, _ = sf.read(segment_path, dtype='int16') output.write(audio_segment) # Stream the current progress # yield output_file # Add silence after each segment if segment.endswith("...") or segment.endswith("…"): output.write(long_silence) elif segment.endswith(".") or segment.endswith("\n") or segment.endswith("۔"): output.write(short_silence) finally: # Clean up the temporary directory shutil.rmtree(temp_dir) # Return the final WAV file yield output_file # def text_to_speech(text, audio_file=None): # # Normalize the input text # normalized_text = normalize_text(text) # print("normalized text: ", normalized_text) # # Generate speech: Write to file # output_file = f"{uuid.uuid4()}.wav" # with wave.open(output_file, "wb") as wav_file: # voice.synthesize(normalized_text, wav_file, **synthesize_args) # return output_file iface = gr.Interface( fn=text_to_speech, inputs=[ gr.Textbox(label="Enter Sindhi text to convert to speech", value="هيلو ڪهڙا حال آهن") ], outputs=[ gr.Audio(label="Generated Speech", type="numpy") ], title="Sindhi Text-to-Speech Demo", description="Enter Sindhi text, and listen to the generated speech. Use shorter messages for better results." ) iface.launch(share=True)