fahadqazi's picture
new
2b45ac4
raw
history blame
3.3 kB
import gradio as gr
import torch
import tempfile
import os
import requests
from moviepy import VideoFileClip
from transformers import pipeline, WhisperProcessor, WhisperForConditionalGeneration, Wav2Vec2Processor, Wav2Vec2Model
import torchaudio
import yt_dlp as youtube_dl
# Load Whisper model to confirm English
whisper_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-tiny", device="cpu")
# Placeholder accent classifier (replace with real one or your own logic)
def classify_accent(audio_tensor, sample_rate):
# In a real case, you'd use a fine-tuned model or wav2vec2 embeddings
# We'll fake a classification here for demonstration
return {
"accent": "American",
"confidence": 87.2,
"summary": "The speaker uses rhotic pronunciation and North American intonation."
}
def download_video(url):
if "youtube.com" in url or "youtu.be" in url:
ydl_opts = {
'format': 'best[ext=mp4]',
'outtmpl': tempfile.NamedTemporaryFile(suffix=".mp4", delete=False).name,
'quiet': True,
'noplaylist': True,
}
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
info = ydl.extract_info(url, download=True)
return ydl.prepare_filename(info)
else:
video_path = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False).name
response = requests.get(url, stream=True)
with open(video_path, "wb") as f:
for chunk in response.iter_content(chunk_size=1024*1024):
if chunk:
f.write(chunk)
return video_path
def extract_audio(video_path):
audio_path = tempfile.NamedTemporaryFile(suffix=".wav", delete=False).name
clip = VideoFileClip(video_path)
clip.audio.write_audiofile(audio_path, codec='pcm_s16le')
return audio_path
def transcribe(audio_path):
result = whisper_pipe(audio_path)
return result['text']
def analyze_accent(url):
try:
video_path = download_video(url)
audio_path = extract_audio(video_path)
# Load audio with torchaudio
waveform, sample_rate = torchaudio.load(audio_path)
# Transcription (to verify English)
transcript = transcribe(audio_path)
if len(transcript.strip()) < 3:
return "Could not understand speech. Please try another video."
# Accent classification
result = classify_accent(waveform, sample_rate)
output = f"**Accent**: {result['accent']}\n\n"
output += f"**Confidence**: {result['confidence']}%\n\n"
output += f"**Explanation**: {result['summary']}\n\n"
output += f"**Transcript** (first 200 chars): {transcript[:200]}..."
# Clean up temp files
os.remove(video_path)
os.remove(audio_path)
return output
except Exception as e:
return f"❌ Error: {str(e)}"
gr.Interface(
fn=analyze_accent,
inputs=gr.Textbox(label="Public Video URL (e.g. MP4, Loom)", placeholder="https://..."),
outputs=gr.Markdown(label="Accent Analysis Result"),
title="English Accent Classifier",
description="Paste a video URL (MP4/Loom) to extract audio, transcribe speech, and classify the English accent (e.g., American, British, etc.)."
).launch()