fahadqazi's picture
accent detection
822f07f
raw
history blame
4.64 kB
import gradio as gr
import torch
import tempfile
import os
import requests
from moviepy import VideoFileClip
from transformers import pipeline
import torchaudio
from speechbrain.pretrained.interfaces import foreign_class
# Load Whisper model to confirm English
whisper_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-tiny", device="cpu")
classifier = foreign_class(source="Jzuluaga/accent-id-commonaccent_xlsr-en-english", pymodule_file="custom_interface.py", classname="CustomEncoderWav2vec2Classifier")
# Placeholder accent classifier (replace with real one or your own logic)
def classify_accent(audio_tensor, sample_rate):
if sample_rate != 16000:
resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)
audio_tensor = resampler(audio_tensor)
out_prob, score, index, text_lab = classifier.classify_batch(audio_tensor)
return {
"accent": "American",
"confidence": 87.2,
"summary": "The speaker uses rhotic pronunciation and North American intonation."
}
def download_video(url):
video_path = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False).name
response = requests.get(url, stream=True)
with open(video_path, "wb") as f:
for chunk in response.iter_content(chunk_size=1024*1024):
if chunk:
f.write(chunk)
return video_path
def extract_audio(video_path):
audio_path = tempfile.NamedTemporaryFile(suffix=".wav", delete=False).name
clip = VideoFileClip(video_path)
clip.audio.write_audiofile(audio_path, codec='pcm_s16le')
return audio_path
def transcribe(audio_path):
result = whisper_pipe(audio_path, return_language=True)
print(result)
return result['text'], result['chunks'][0]['language']
def analyze_accent(url_or_file):
try:
print("Video path 1:", url_or_file)
if url_or_file.startswith("http"):
video_path = download_video(url_or_file)
else:
video_path = url_or_file
print("Video path:", video_path)
audio_path = extract_audio(video_path)
print("Audio path:", audio_path)
# Load audio with torchaudio
waveform, sample_rate = torchaudio.load(audio_path)
# Transcription (to verify English)
transcript = transcribe(audio_path)
if len(transcript[0].strip()) < 3:
return "Could not understand speech. Please try another video."
# Accent classification
result = classify_accent(waveform, sample_rate)
output = f"**Language**: {transcript[1]}\n\n"
if transcript[1].lower() != "en" and transcript[1].lower() != "english":
return "The video is not in English. Please provide an English video."
output += f"**Accent**: {result['accent']}\n\n"
output += f"**Confidence**: {result['confidence']}%\n\n"
output += f"**Explanation**: {result['summary']}\n\n"
output += f"**Transcript** (first 200 chars): {transcript[0][:200]}..."
# Clean up temp files
if url_or_file.startswith("http"):
os.remove(video_path)
os.remove(audio_path)
return output
except Exception as e:
return f"❌ Error: {str(e)}"
# gr.Interface(
# fn=analyze_accent,
# inputs=gr.Textbox(label="Public Video URL (e.g. MP4)", placeholder="https://..."),
# outputs=gr.Markdown(label="Accent Analysis Result"),
# title="English Accent Classifier",
# description="Paste a video URL (MP4) to extract audio, transcribe speech, and classify the English accent (e.g., American, British, etc.).",
# examples=[
# ["https://example.com/sample.mp4"], # example URL
# [open("cleo-abram.mp4", "rb")] # local file example
# ],
# live=True
# ).launch()
with gr.Blocks() as demo:
gr.Markdown("# English Accent Classifier")
with gr.Tab("From URL"):
url_input = gr.Textbox(label="Video URL (MP4)")
url_output = gr.Markdown()
gr.Button("Analyze").click(fn=analyze_accent, inputs=url_input, outputs=url_output)
with gr.Tab("From File"):
file_input = gr.File(label="Upload MP4 Video", file_types=[".mp4"])
file_output = gr.Markdown()
gr.Button("Analyze").click(fn=analyze_accent, inputs=file_input, outputs=file_output)
gr.Examples(
examples=[
[os.getcwd() + "/examples/cleo-abram.mp4"],
],
inputs=file_input,
outputs=file_output,
fn=analyze_accent,
label="Example MP4 Videos"
)
demo.launch()