Spaces:
Running
Running
accent detection
Browse files- .gitignore +2 -0
- app.py +18 -8
- requirements.txt +3 -1
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
pretrained_models/
|
2 |
+
wav2vec2_checkpoints/
|
app.py
CHANGED
@@ -4,16 +4,20 @@ import tempfile
|
|
4 |
import os
|
5 |
import requests
|
6 |
from moviepy import VideoFileClip
|
7 |
-
from transformers import pipeline
|
8 |
import torchaudio
|
|
|
9 |
|
10 |
# Load Whisper model to confirm English
|
11 |
whisper_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-tiny", device="cpu")
|
12 |
|
|
|
|
|
13 |
# Placeholder accent classifier (replace with real one or your own logic)
|
14 |
def classify_accent(audio_tensor, sample_rate):
|
15 |
-
|
16 |
-
|
|
|
17 |
return {
|
18 |
"accent": "American",
|
19 |
"confidence": 87.2,
|
@@ -36,8 +40,9 @@ def extract_audio(video_path):
|
|
36 |
return audio_path
|
37 |
|
38 |
def transcribe(audio_path):
|
39 |
-
result = whisper_pipe(audio_path)
|
40 |
-
|
|
|
41 |
|
42 |
def analyze_accent(url_or_file):
|
43 |
try:
|
@@ -61,16 +66,21 @@ def analyze_accent(url_or_file):
|
|
61 |
|
62 |
# Transcription (to verify English)
|
63 |
transcript = transcribe(audio_path)
|
64 |
-
if len(transcript.strip()) < 3:
|
65 |
return "Could not understand speech. Please try another video."
|
66 |
|
67 |
# Accent classification
|
68 |
result = classify_accent(waveform, sample_rate)
|
69 |
|
70 |
-
output = f"**
|
|
|
|
|
|
|
|
|
|
|
71 |
output += f"**Confidence**: {result['confidence']}%\n\n"
|
72 |
output += f"**Explanation**: {result['summary']}\n\n"
|
73 |
-
output += f"**Transcript** (first 200 chars): {transcript[:200]}..."
|
74 |
|
75 |
# Clean up temp files
|
76 |
if url_or_file.startswith("http"):
|
|
|
4 |
import os
|
5 |
import requests
|
6 |
from moviepy import VideoFileClip
|
7 |
+
from transformers import pipeline
|
8 |
import torchaudio
|
9 |
+
from speechbrain.pretrained.interfaces import foreign_class
|
10 |
|
11 |
# Load Whisper model to confirm English
|
12 |
whisper_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-tiny", device="cpu")
|
13 |
|
14 |
+
classifier = foreign_class(source="Jzuluaga/accent-id-commonaccent_xlsr-en-english", pymodule_file="custom_interface.py", classname="CustomEncoderWav2vec2Classifier")
|
15 |
+
|
16 |
# Placeholder accent classifier (replace with real one or your own logic)
|
17 |
def classify_accent(audio_tensor, sample_rate):
|
18 |
+
out_prob, score, index, text_lab = classifier.classify_batch([audio_tensor])
|
19 |
+
print(out_prob, score, index, text_lab)
|
20 |
+
|
21 |
return {
|
22 |
"accent": "American",
|
23 |
"confidence": 87.2,
|
|
|
40 |
return audio_path
|
41 |
|
42 |
def transcribe(audio_path):
|
43 |
+
result = whisper_pipe(audio_path, return_language=True)
|
44 |
+
print(result)
|
45 |
+
return result['text'], result['chunks'][0]['language']
|
46 |
|
47 |
def analyze_accent(url_or_file):
|
48 |
try:
|
|
|
66 |
|
67 |
# Transcription (to verify English)
|
68 |
transcript = transcribe(audio_path)
|
69 |
+
if len(transcript[0].strip()) < 3:
|
70 |
return "Could not understand speech. Please try another video."
|
71 |
|
72 |
# Accent classification
|
73 |
result = classify_accent(waveform, sample_rate)
|
74 |
|
75 |
+
output = f"**Language**: {transcript[1]}\n\n"
|
76 |
+
|
77 |
+
if transcript[1].lower() != "en" and transcript[1].lower() != "english":
|
78 |
+
return "The video is not in English. Please provide an English video."
|
79 |
+
|
80 |
+
output += f"**Accent**: {result['accent']}\n\n"
|
81 |
output += f"**Confidence**: {result['confidence']}%\n\n"
|
82 |
output += f"**Explanation**: {result['summary']}\n\n"
|
83 |
+
output += f"**Transcript** (first 200 chars): {transcript[0][:200]}..."
|
84 |
|
85 |
# Clean up temp files
|
86 |
if url_or_file.startswith("http"):
|
requirements.txt
CHANGED
@@ -5,4 +5,6 @@ torchaudio
|
|
5 |
moviepy
|
6 |
ffmpeg-python
|
7 |
requests
|
8 |
-
yt_dlp
|
|
|
|
|
|
5 |
moviepy
|
6 |
ffmpeg-python
|
7 |
requests
|
8 |
+
yt_dlp
|
9 |
+
soundfile
|
10 |
+
speechbrain==0.5.14
|