Initial commit: Gradio app for private NeMo ASR model
Browse files- app.py +27 -0
- requirements.txt +5 -0
app.py
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import nemo.collections.asr as nemo_asr
|
| 3 |
+
|
| 4 |
+
# Load your private model (assuming you already have access credentials or it is publicly available)
|
| 5 |
+
asr_model = nemo_asr.models.EncDecHybridRNNTCTCBPEModel.from_pretrained(model_name="faimlab/stt_fa_fastconformer_hybrid_large_dataset_v30")
|
| 6 |
+
|
| 7 |
+
# Define a function that takes an audio file, transcribes it, and returns the text
|
| 8 |
+
def transcribe_audio(audio_file):
|
| 9 |
+
# Convert the audio file to the correct format (16k mono)
|
| 10 |
+
audio_path = audio_file.name # Temporary location of the uploaded audio file
|
| 11 |
+
# Assuming the model expects 16k mono audio, no need for conversion if file is correct format.
|
| 12 |
+
output = asr_model.transcribe([audio_path])
|
| 13 |
+
return output[0].text # Return transcribed text
|
| 14 |
+
|
| 15 |
+
# Create the Gradio interface
|
| 16 |
+
iface = gr.Interface(
|
| 17 |
+
fn=transcribe_audio,
|
| 18 |
+
inputs=gr.inputs.Audio(source="upload", type="file", label="Upload an Audio File"),
|
| 19 |
+
outputs="text",
|
| 20 |
+
live=True,
|
| 21 |
+
title="Speech-to-Text with Private ASR Model",
|
| 22 |
+
description="Upload a 16kHz mono audio file for transcription."
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
# Launch the Gradio app
|
| 26 |
+
if __name__ == "__main__":
|
| 27 |
+
iface.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
pydub
|
| 3 |
+
librosa
|
| 4 |
+
git+https://github.com/NVIDIA/NeMo.git@main#egg=nemo_toolkit[all]
|
| 5 |
+
huggingface_hub
|