import gradio as gr import nemo.collections.asr as nemo_asr from pydub import AudioSegment import os import yt_dlp as youtube_dl from huggingface_hub import login from hazm import Normalizer import numpy as np import re import time # Fetch the token from an environment variable HF_TOKEN = os.getenv("HF_TOKEN") if not HF_TOKEN: raise ValueError("HF_TOKEN environment variable not set. Please provide a valid Hugging Face token.") # Authenticate with Hugging Face login(HF_TOKEN) # Load the private NeMo ASR model try: asr_model = nemo_asr.models.EncDecHybridRNNTCTCBPEModel.from_pretrained( model_name="faimlab/stt_fa_fastconformer_hybrid_large_dataset_v30" ) except Exception as e: raise RuntimeError(f"Failed to load model: {str(e)}") normalizer = Normalizer() def load_audio(audio_path): audio = AudioSegment.from_file(audio_path) audio = audio.set_channels(1).set_frame_rate(16000) audio_samples = np.array(audio.get_array_of_samples(), dtype=np.float32) audio_samples /= np.max(np.abs(audio_samples)) return audio_samples, audio.frame_rate def transcribe_chunk(audio_chunk, model): transcription = model.transcribe([audio_chunk], batch_size=1, verbose=False) return transcription[0].text def transcribe_audio(file_path, model, chunk_size=30*16000): waveform, _ = load_audio(file_path) transcriptions = [] for start in range(0, len(waveform), chunk_size): end = min(len(waveform), start + chunk_size) transcription = transcribe_chunk(waveform[start:end], model) transcriptions.append(transcription) transcriptions = ' '.join(transcriptions) transcriptions = re.sub(' +', ' ', transcriptions) transcriptions = normalizer.normalize(transcriptions) return transcriptions # YouTube audio download function YT_LENGTH_LIMIT_S = 3600 def download_yt_audio(yt_url, filename, cookie_file="cookies.txt"): info_loader = youtube_dl.YoutubeDL() try: info = info_loader.extract_info(yt_url, download=False) except youtube_dl.utils.DownloadError as err: raise gr.Error(str(err)) file_length = info["duration_string"] file_h_m_s = file_length.split(":") file_h_m_s = [int(sub_length) for sub_length in file_h_m_s] if len(file_h_m_s) == 1: file_h_m_s.insert(0, 0) if len(file_h_m_s) == 2: file_h_m_s.insert(0, 0) file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2] if file_length_s > YT_LENGTH_LIMIT_S: yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S)) file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s)) raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.") ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best", "cookies": cookie_file} with youtube_dl.YoutubeDL(ydl_opts) as ydl: try: ydl.download([yt_url]) except youtube_dl.utils.ExtractorError as err: raise gr.Error(str(err)) # Gradio Interface def transcribe(audio): if audio is None: return "Please upload an audio file." transcription = transcribe_audio(audio, asr_model) return transcription def transcribe_yt(yt_url): temp_filename = "/tmp/yt_audio.mp4" # Temporary filename for the downloaded video download_yt_audio(yt_url, temp_filename) transcription = transcribe_audio(temp_filename, asr_model) return transcription mf_transcribe = gr.Interface( fn=transcribe, inputs=gr.Microphone(type="filepath"), outputs=gr.Textbox(label="Transcription"), theme="huggingface", title="Persian ASR Transcription with NeMo Fast Conformer", description=( "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the NeMo's Fast Conformer Hybrid Large.\n\n" "Trained on ~800 hours of Persian speech dataset (Common Voice 17 (~300 hours), YouTube (~400 hours), NasleMana (~90 hours), In-house dataset (~70 hours)).\n\n" "For commercial applications, contact us via email: .\n\n" "Credit FAIM Group, Sharif University of Technology.\n\n" ), allow_flagging="never", ) # File upload tab file_transcribe = gr.Interface( fn=transcribe, inputs=gr.Audio(type="filepath", label="Audio file"), outputs=gr.Textbox(label="Transcription"), theme="huggingface", title="Persian ASR Transcription with NeMo Fast Conformer", description=( "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the NeMo's Fast Conformer Hybrid Large.\n\n" "Trained on ~800 hours of Persian speech dataset (Common Voice 17 (~300 hours), YouTube (~400 hours), NasleMana (~90 hours), In-house dataset (~70 hours)).\n\n" "For commercial applications, contact us via email: .\n\n" "Credit FAIM Group, Sharif University of Technology.\n\n" ), allow_flagging="never", ) # YouTube tab yt_transcribe = gr.Interface( fn=transcribe_yt, inputs=gr.Textbox(label="YouTube URL", placeholder="Enter the YouTube URL here"), outputs=gr.Textbox(label="Transcription"), theme="huggingface", title="Transcribe YouTube Video", description="Transcribe audio from a YouTube video by providing its URL. Currently YouTube is blocking the requests. So you will see the app showing error", allow_flagging="never", ) # Gradio Interface demo = gr.Blocks() with demo: # Create the tabs with the list of interfaces gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Microphone", "Audio file", "YouTube"]) demo.launch()