Spaces:
Sleeping
Sleeping
dont know
Browse files
app.py
CHANGED
|
@@ -5,70 +5,39 @@ import os
|
|
| 5 |
|
| 6 |
import torch
|
| 7 |
import ultralytics
|
| 8 |
-
from ultralytics import YOLO
|
| 9 |
|
| 10 |
|
| 11 |
-
|
| 12 |
-
|
| 13 |
|
| 14 |
-
model = YOLO("yolov5_0.65map_exp7_best.pt")
|
| 15 |
model.conf = 0.20 # NMS confidence threshold
|
| 16 |
|
| 17 |
path = [['img/test-image.jpg'], ['img/test-image-2.jpg']]
|
| 18 |
|
| 19 |
-
# def show_preds_image(image_path):
|
| 20 |
-
# image = cv2.imread(image_path)
|
| 21 |
-
# # outputs = model(source=image_path)
|
| 22 |
-
# # results = outputs[0].cpu().numpy()
|
| 23 |
-
# results = model(image_path)
|
| 24 |
-
# results.xyxy[0] # img1 predictions (tensor)
|
| 25 |
-
# results.numpy().xyxy[0] # img1 predictions (pandas)
|
| 26 |
-
# predictions = results.pred[0]
|
| 27 |
-
# for i, det in enumerate(results.boxes.xyxy):
|
| 28 |
-
# cv2.rectangle(
|
| 29 |
-
# image,
|
| 30 |
-
# (int(det[0]), int(det[1])),
|
| 31 |
-
# (int(det[2]), int(det[3])),
|
| 32 |
-
# color=(0, 0, 255),
|
| 33 |
-
# thickness=2,
|
| 34 |
-
# lineType=cv2.LINE_AA
|
| 35 |
-
# )
|
| 36 |
-
# return cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 37 |
-
|
| 38 |
def show_preds_image(image_path):
|
| 39 |
image = cv2.imread(image_path)
|
| 40 |
-
outputs = model
|
| 41 |
-
results = outputs[0].cpu().numpy()
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
#
|
| 54 |
-
#
|
| 55 |
-
#
|
| 56 |
-
#
|
| 57 |
-
#
|
| 58 |
-
#
|
| 59 |
-
|
| 60 |
-
# results.xyxy[0] # img1 predictions (tensor)
|
| 61 |
-
# results.pandas().xyxy[0] # img1 predictions (pandas)
|
| 62 |
-
|
| 63 |
-
# # parse results
|
| 64 |
-
# predictions = results.pred[0]
|
| 65 |
-
# boxes = predictions[:, :4] # x1, y1, x2, y2
|
| 66 |
-
# scores = predictions[:, 4]
|
| 67 |
-
# categories = predictions[:, 5]
|
| 68 |
|
| 69 |
-
# return results.show()
|
| 70 |
|
| 71 |
-
|
| 72 |
|
| 73 |
inputs_image = [
|
| 74 |
gr.components.Image(type="filepath", label="Input Image"),
|
|
|
|
| 5 |
|
| 6 |
import torch
|
| 7 |
import ultralytics
|
|
|
|
| 8 |
|
| 9 |
|
| 10 |
+
model = torch.hub.load("ultralytics/yolov5", "custom", path="yolov5_0.65map_exp7_best.pt",
|
| 11 |
+
force_reload=False)
|
| 12 |
|
|
|
|
| 13 |
model.conf = 0.20 # NMS confidence threshold
|
| 14 |
|
| 15 |
path = [['img/test-image.jpg'], ['img/test-image-2.jpg']]
|
| 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
def show_preds_image(image_path):
|
| 18 |
image = cv2.imread(image_path)
|
| 19 |
+
# outputs = model(source=image_path)
|
| 20 |
+
# results = outputs[0].cpu().numpy()
|
| 21 |
+
results = model(image_path)
|
| 22 |
+
results.xyxy[0] # img1 predictions (tensor)
|
| 23 |
+
results.pandas().xyxy[0] # img1 predictions (pandas)
|
| 24 |
+
predictions = results.pred[0]
|
| 25 |
+
boxes = predictions[:, :4] # x1, y1, x2, y2
|
| 26 |
+
scores = predictions[:, 4]
|
| 27 |
+
categories = predictions[:, 5]
|
| 28 |
+
|
| 29 |
+
# for i, det in enumerate(results.boxes.xyxy):
|
| 30 |
+
# cv2.rectangle(
|
| 31 |
+
# image,
|
| 32 |
+
# (int(det[0]), int(det[1])),
|
| 33 |
+
# (int(det[2]), int(det[3])),
|
| 34 |
+
# color=(0, 0, 255),
|
| 35 |
+
# thickness=2,
|
| 36 |
+
# lineType=cv2.LINE_AA
|
| 37 |
+
# )
|
| 38 |
+
return results.show()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
|
|
|
| 40 |
|
|
|
|
| 41 |
|
| 42 |
inputs_image = [
|
| 43 |
gr.components.Image(type="filepath", label="Input Image"),
|