File size: 6,633 Bytes
98c6811 fd102e9 7c06aef 98c6811 8f5ce26 98c6811 8f5ce26 98c6811 7c06aef 98c6811 7c06aef 98c6811 7c06aef 8f5ce26 98c6811 4e8cb1a 7c06aef 8f5ce26 7c06aef 98c6811 fd102e9 4e8cb1a 7c06aef fd102e9 4e8cb1a fd102e9 8f5ce26 fd102e9 8f5ce26 fd102e9 8f5ce26 fd102e9 8f5ce26 fd102e9 8f5ce26 fd102e9 8f5ce26 fd102e9 4e8cb1a fd102e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
import random
from collections import Counter, defaultdict
from langcodes import Language, standardize_tag
from rich import print
from tqdm import tqdm
import asyncio
from tqdm.asyncio import tqdm_asyncio
import os
from datasets import Dataset, load_dataset
from models import translate_google, get_google_supported_languages
from datasets_.util import _get_dataset_config_names, _load_dataset
slug_uhura_truthfulqa = "masakhane/uhura-truthfulqa"
slug_truthfulqa_autotranslated = "fair-forward/truthfulqa-autotranslated"
tags_uhura_truthfulqa = {
standardize_tag(a.split("_")[0], macro=True): a for a in _get_dataset_config_names(slug_uhura_truthfulqa)
if a.endswith("multiple_choice")
}
# Get available auto-translated languages
try:
tags_truthfulqa_autotranslated = {
standardize_tag(a, macro=True): a for a in _get_dataset_config_names(slug_truthfulqa_autotranslated)
}
except Exception:
tags_truthfulqa_autotranslated = {}
def add_choices(row):
row["choices"] = row["mc1_targets"]["choices"]
row["labels"] = row["mc1_targets"]["labels"]
return row
async def load_truthfulqa(language_bcp_47, nr):
if language_bcp_47 in tags_uhura_truthfulqa.keys():
ds = _load_dataset(
slug_uhura_truthfulqa, tags_uhura_truthfulqa[language_bcp_47]
)
ds = ds.map(add_choices)
task = ds["test"][nr]
return "masakhane/uhura-truthfulqa", task, "human"
elif language_bcp_47 in tags_truthfulqa_autotranslated.keys():
# Load from auto-translated dataset (same samples as translation)
ds = _load_dataset(slug_truthfulqa_autotranslated, language_bcp_47)
test_split = ds["test"] if "test" in ds else ds
if nr < len(test_split):
task = test_split[nr]
return slug_truthfulqa_autotranslated, task, "machine"
# If requested index exceeds stored sample count, fall back to on-the-fly
return await load_truthfulqa_translated(language_bcp_47, nr)
else:
# Fallback to on-the-fly translation for missing languages/samples
return await load_truthfulqa_translated(language_bcp_47, nr)
async def load_truthfulqa_translated(language_bcp_47, nr):
"""
Load TruthfulQA data with on-the-fly Google translation.
"""
supported_languages = get_google_supported_languages()
if language_bcp_47 not in supported_languages:
return None, None, None
print(f"π Translating TruthfulQA data to {language_bcp_47} on-the-fly...")
try:
# Load English TruthfulQA data
ds = _load_dataset(slug_uhura_truthfulqa, tags_uhura_truthfulqa["en"])
ds = ds.map(add_choices)
# Use the same 20 samples that the evaluation pipeline uses (indices 0-19)
if nr < 20:
task = ds["test"][nr] # Direct mapping to same sample
else:
# Fallback to sequential if nr exceeds our sample count
task = ds["test"][nr % len(ds["test"])]
# Translate question and choices
question_translated = await translate_google(task["question"], "en", language_bcp_47)
choices_translated = []
for choice in task["choices"]:
choice_translated = await translate_google(choice, "en", language_bcp_47)
choices_translated.append(choice_translated)
translated_task = {
"question": question_translated,
"choices": choices_translated,
"labels": task["labels"], # Keep original labels
}
return f"truthfulqa-translated-{language_bcp_47}", translated_task, "machine"
except Exception as e:
print(f"β Translation failed for {language_bcp_47}: {e}")
return None, None, None
def translate_truthfulqa(languages):
human_translated = [*tags_uhura_truthfulqa.keys()]
untranslated = [
lang
for lang in languages["bcp_47"].values[:150]
if lang not in human_translated and lang in get_google_supported_languages()
]
n_samples = 20
# Set fixed seed for consistent sample selection across all languages
random.seed(42)
slug = "fair-forward/truthfulqa-autotranslated"
for lang in tqdm(untranslated):
# check if already exists on hub
try:
ds_lang = load_dataset(slug, lang)
except (ValueError, Exception):
print(f"Translating {lang}...")
for split in ["train", "test"]:
ds = _load_dataset(slug_uhura_truthfulqa, tags_uhura_truthfulqa["en"], split=split)
samples = []
if split == "train":
samples.extend(ds)
else:
# Use the same 20 samples that the evaluation pipeline uses (indices 0-19)
for i in range(min(n_samples, len(ds))):
task = ds[i]
samples.append(task)
# Translate questions
questions_tr = [
translate_google(s["question"], "en", lang) for s in samples
]
questions_tr = asyncio.run(tqdm_asyncio.gather(*questions_tr))
# Translate choices for each sample
all_choices_tr = []
all_labels = []
for s in samples:
# Get choices from mc1_targets
choices = s["mc1_targets"]["choices"]
labels = s["mc1_targets"]["labels"]
# Translate choices
choices_tr = [
translate_google(choice, "en", lang) for choice in choices
]
choices_tr = asyncio.run(tqdm_asyncio.gather(*choices_tr))
all_choices_tr.append(choices_tr)
all_labels.append(labels)
ds_lang = Dataset.from_dict(
{
"question": questions_tr,
"choices": all_choices_tr,
"labels": all_labels,
}
)
ds_lang.push_to_hub(
slug,
split=split,
config_name=lang,
token=os.getenv("HUGGINGFACE_ACCESS_TOKEN"),
)
ds_lang.to_json(
f"data/translations/truthfulqa/{lang}_{split}.json",
lines=False,
force_ascii=False,
indent=2,
)
|