
Upload from GitHub Actions: Merge remote changes and apply terminology updates: Commercial->closed-source, Open->open-source
ebaf279
verified
import json | |
import os | |
import numpy as np | |
import pandas as pd | |
import uvicorn | |
from countries import make_country_table | |
from fastapi import FastAPI, Request | |
from fastapi.middleware.cors import CORSMiddleware | |
from fastapi.middleware.gzip import GZipMiddleware | |
from fastapi.responses import JSONResponse | |
from fastapi.staticfiles import StaticFiles | |
scores = pd.read_json("results.json") | |
languages = pd.read_json("languages.json") | |
models = pd.read_json("models.json") | |
def mean(lst): | |
return sum(lst) / len(lst) if lst else None | |
task_metrics = [ | |
"translation_from_bleu", | |
"translation_to_bleu", | |
"classification_accuracy", | |
"mmlu_accuracy", | |
"mgsm_accuracy", | |
] | |
task_metrics_basic = ["translation_from_bleu", "translation_to_bleu", "classification_accuracy"] | |
def compute_normalized_average(df, metrics): | |
"""Compute average of min-max normalized metric columns.""" | |
normalized_df = df[metrics].copy() | |
for col in metrics: | |
if col in normalized_df.columns: | |
col_min = normalized_df[col].min() | |
col_max = normalized_df[col].max() | |
if col_max > col_min: # Avoid division by zero | |
normalized_df[col] = (normalized_df[col] - col_min) / (col_max - col_min) | |
else: | |
normalized_df[col] = 0 # If all values are the same, set to 0 | |
return normalized_df.mean(axis=1, skipna=False) | |
def make_model_table(df, models): | |
df = ( | |
df.groupby(["model", "task", "metric"]) | |
.agg({"score": "mean", "bcp_47": "nunique"}) | |
.reset_index() | |
) | |
df["task_metric"] = df["task"] + "_" + df["metric"] | |
df = df.drop(columns=["task", "metric"]) | |
df = df.pivot(index="model", columns="task_metric", values="score") | |
df["average"] = compute_normalized_average(df, task_metrics_basic) | |
df = df.sort_values(by="average", ascending=False).reset_index() | |
df = pd.merge(df, models, left_on="model", right_on="id", how="left") | |
df["rank"] = df.index + 1 | |
df = df[ | |
[ | |
"rank", | |
"model", | |
"name", | |
"provider_name", | |
"hf_id", | |
"creation_date", | |
"size", | |
"type", | |
"license", | |
"cost", | |
"average", | |
*task_metrics, | |
] | |
] | |
return df | |
def make_language_table(df, languages): | |
df = ( | |
df.groupby(["bcp_47", "task", "metric"]) | |
.agg({"score": "mean", "model": "nunique"}) | |
.reset_index() | |
) | |
df["task_metric"] = df["task"] + "_" + df["metric"] | |
df = df.drop(columns=["task", "metric"]) | |
df = df.pivot(index="bcp_47", columns="task_metric", values="score").reset_index() | |
df["average"] = compute_normalized_average(df, task_metrics_basic) | |
df = pd.merge(languages, df, on="bcp_47", how="outer") | |
df = df.sort_values(by="speakers", ascending=False) | |
df = df[ | |
[ | |
"bcp_47", | |
"language_name", | |
"autonym", | |
"speakers", | |
"family", | |
"average", | |
"in_benchmark", | |
*task_metrics, | |
] | |
] | |
return df | |
app = FastAPI() | |
app.add_middleware(CORSMiddleware, allow_origins=["*"]) | |
app.add_middleware(GZipMiddleware, minimum_size=1000) | |
def serialize(df): | |
return df.replace({np.nan: None}).to_dict(orient="records") | |
async def data(request: Request): | |
body = await request.body() | |
data = json.loads(body) | |
selected_languages = data.get("selectedLanguages", {}) | |
df = scores.groupby(["model", "bcp_47", "task", "metric"]).mean().reset_index() | |
# lang_results = pd.merge(languages, lang_results, on="bcp_47", how="outer") | |
language_table = make_language_table(df, languages) | |
datasets_df = pd.read_json("datasets.json") | |
if selected_languages: | |
# the filtering is only applied for the model table and the country data | |
df = df[df["bcp_47"].isin(lang["bcp_47"] for lang in selected_languages)] | |
if len(df) == 0: | |
model_table = pd.DataFrame() | |
countries = pd.DataFrame() | |
else: | |
model_table = make_model_table(df, models) | |
countries = make_country_table(make_language_table(df, languages)) | |
all_tables = { | |
"model_table": serialize(model_table), | |
"language_table": serialize(language_table), | |
"dataset_table": serialize(datasets_df), | |
"countries": serialize(countries), | |
} | |
return JSONResponse(content=all_tables) | |
# Only serve static files if build directory exists (production mode) | |
if os.path.exists("frontend/build"): | |
app.mount("/", StaticFiles(directory="frontend/build", html=True), name="frontend") | |
else: | |
print("π§ͺ Development mode: frontend/build directory not found") | |
print("π Frontend should be running on http://localhost:3000") | |
print("π‘ API available at http://localhost:8000/api/data") | |
if __name__ == "__main__": | |
uvicorn.run(app, host="0.0.0.0", port=int(os.environ.get("PORT", 8000))) | |