Upload from GitHub Actions: Add Todos for using existing machine-translated datasets rather than our own ones
Browse files- evals/datasets_/arc.py +2 -4
- evals/datasets_/mgsm.py +8 -8
- evals/datasets_/mmlu.py +3 -55
- evals/datasets_/truthfulqa.py +3 -49
- evals/tasks.py +15 -26
evals/datasets_/arc.py
CHANGED
@@ -1,11 +1,10 @@
|
|
1 |
import random
|
2 |
-
from collections import Counter, defaultdict
|
3 |
|
4 |
-
from langcodes import
|
5 |
from rich import print
|
6 |
from models import translate_google, get_google_supported_languages
|
7 |
from tqdm import tqdm
|
8 |
-
from datasets import load_dataset
|
9 |
import asyncio
|
10 |
from tqdm.asyncio import tqdm_asyncio
|
11 |
import os
|
@@ -62,7 +61,6 @@ def load_uhura_arc_easy(language_bcp_47, nr):
|
|
62 |
task = ds["test"].filter(lambda x: x["id"] == common_ids_test[nr])[0]
|
63 |
return "fair-forward/arc-easy-autotranslated", task, "machine"
|
64 |
else:
|
65 |
-
# ARC does not support on-the-fly translation currently
|
66 |
return None, None, None
|
67 |
|
68 |
|
|
|
1 |
import random
|
|
|
2 |
|
3 |
+
from langcodes import standardize_tag
|
4 |
from rich import print
|
5 |
from models import translate_google, get_google_supported_languages
|
6 |
from tqdm import tqdm
|
7 |
+
from datasets import load_dataset, Dataset
|
8 |
import asyncio
|
9 |
from tqdm.asyncio import tqdm_asyncio
|
10 |
import os
|
|
|
61 |
task = ds["test"].filter(lambda x: x["id"] == common_ids_test[nr])[0]
|
62 |
return "fair-forward/arc-easy-autotranslated", task, "machine"
|
63 |
else:
|
|
|
64 |
return None, None, None
|
65 |
|
66 |
|
evals/datasets_/mgsm.py
CHANGED
@@ -49,13 +49,6 @@ def load_mgsm(language_bcp_47, nr):
|
|
49 |
slug_afrimgsm, subset=tags_afrimgsm[language_bcp_47], split="test"
|
50 |
)
|
51 |
return slug_afrimgsm, ds[nr], "human"
|
52 |
-
elif language_bcp_47 in tags_gsm_autotranslated.keys():
|
53 |
-
ds = _load_dataset(
|
54 |
-
slug_gsm_autotranslated,
|
55 |
-
subset=tags_gsm_autotranslated[language_bcp_47],
|
56 |
-
split="test",
|
57 |
-
)
|
58 |
-
return slug_gsm_autotranslated, ds[nr], "machine"
|
59 |
elif language_bcp_47 in tags_gsm8kx.keys():
|
60 |
row = _load_dataset(
|
61 |
slug_gsm8kx,
|
@@ -64,7 +57,14 @@ def load_mgsm(language_bcp_47, nr):
|
|
64 |
trust_remote_code=True,
|
65 |
)[nr]
|
66 |
row["answer_number"] = row["answer"].split("####")[1].strip()
|
67 |
-
return slug_gsm8kx, row, "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
else:
|
69 |
return None, None, None
|
70 |
|
|
|
49 |
slug_afrimgsm, subset=tags_afrimgsm[language_bcp_47], split="test"
|
50 |
)
|
51 |
return slug_afrimgsm, ds[nr], "human"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
elif language_bcp_47 in tags_gsm8kx.keys():
|
53 |
row = _load_dataset(
|
54 |
slug_gsm8kx,
|
|
|
57 |
trust_remote_code=True,
|
58 |
)[nr]
|
59 |
row["answer_number"] = row["answer"].split("####")[1].strip()
|
60 |
+
return slug_gsm8kx, row, "machine"
|
61 |
+
elif language_bcp_47 in tags_gsm_autotranslated.keys():
|
62 |
+
ds = _load_dataset(
|
63 |
+
slug_gsm_autotranslated,
|
64 |
+
subset=tags_gsm_autotranslated[language_bcp_47],
|
65 |
+
split="test",
|
66 |
+
)
|
67 |
+
return slug_gsm_autotranslated, ds[nr], "machine"
|
68 |
else:
|
69 |
return None, None, None
|
70 |
|
evals/datasets_/mmlu.py
CHANGED
@@ -164,65 +164,13 @@ async def load_mmlu(language_bcp_47, nr):
|
|
164 |
ds = ds.map(add_choices)
|
165 |
task = ds["test"].filter(lambda x: x["subject"] == category)[nr]
|
166 |
return "CohereForAI/Global-MMLU", task, "human"
|
|
|
167 |
elif language_bcp_47 in tags_mmlu_autotranslated:
|
168 |
ds = _load_dataset("fair-forward/mmlu-autotranslated", language_bcp_47)
|
169 |
filtered = ds["test"].filter(lambda x: x["subject"] == category)
|
170 |
-
|
171 |
-
|
172 |
-
return "fair-forward/mmlu-autotranslated", task, "machine"
|
173 |
-
# Requested index exceeds stored sample count → fallback to on-the-fly
|
174 |
-
return await load_mmlu_translated(language_bcp_47, nr)
|
175 |
else:
|
176 |
-
# Fallback to on-the-fly translation for missing languages
|
177 |
-
return await load_mmlu_translated(language_bcp_47, nr)
|
178 |
-
|
179 |
-
|
180 |
-
async def load_mmlu_translated(language_bcp_47, nr):
|
181 |
-
"""
|
182 |
-
Load MMLU data with on-the-fly Google translation for languages
|
183 |
-
without native or stored auto-translated MMLU, or when more samples are requested.
|
184 |
-
"""
|
185 |
-
supported_languages = get_google_supported_languages()
|
186 |
-
if language_bcp_47 not in supported_languages:
|
187 |
-
return None, None, None
|
188 |
-
|
189 |
-
print(f"🔄 Translating MMLU data to {language_bcp_47} on-the-fly...")
|
190 |
-
|
191 |
-
try:
|
192 |
-
# Load English MMLU base (AfriMMLU English split for category alignment)
|
193 |
-
category = categories[nr % len(categories)]
|
194 |
-
ds = _load_dataset("masakhane/afrimmlu", "eng")
|
195 |
-
ds = ds.map(parse_choices)
|
196 |
-
filtered = ds["test"].filter(lambda x: x["subject"] == category)
|
197 |
-
if len(filtered) == 0:
|
198 |
-
return None, None, None
|
199 |
-
|
200 |
-
# Use the same 20 samples that the evaluation pipeline uses (indices 0-19)
|
201 |
-
if nr < 20:
|
202 |
-
task = filtered[nr] # Direct mapping to same sample
|
203 |
-
else:
|
204 |
-
# Fallback to sequential if nr exceeds our sample count
|
205 |
-
task = filtered[nr % len(filtered)]
|
206 |
-
|
207 |
-
# Translate question and choices
|
208 |
-
question_translated = await translate_google(task["question"], "en", language_bcp_47)
|
209 |
-
choices_translated = []
|
210 |
-
for choice in task["choices"]:
|
211 |
-
choice_translated = await translate_google(choice, "en", language_bcp_47)
|
212 |
-
choices_translated.append(choice_translated)
|
213 |
-
|
214 |
-
# Create translated task
|
215 |
-
translated_task = {
|
216 |
-
"question": question_translated,
|
217 |
-
"choices": choices_translated,
|
218 |
-
"answer": task["answer"], # Keep original answer index
|
219 |
-
"subject": task["subject"],
|
220 |
-
}
|
221 |
-
|
222 |
-
return f"mmlu-translated-{language_bcp_47}", translated_task, "machine"
|
223 |
-
|
224 |
-
except Exception as e:
|
225 |
-
print(f"❌ Translation failed for {language_bcp_47}: {e}")
|
226 |
return None, None, None
|
227 |
|
228 |
|
|
|
164 |
ds = ds.map(add_choices)
|
165 |
task = ds["test"].filter(lambda x: x["subject"] == category)[nr]
|
166 |
return "CohereForAI/Global-MMLU", task, "human"
|
167 |
+
# TODO: add in Okapi, MMLUX @Jonas
|
168 |
elif language_bcp_47 in tags_mmlu_autotranslated:
|
169 |
ds = _load_dataset("fair-forward/mmlu-autotranslated", language_bcp_47)
|
170 |
filtered = ds["test"].filter(lambda x: x["subject"] == category)
|
171 |
+
task = filtered[nr]
|
172 |
+
return "fair-forward/mmlu-autotranslated", task, "machine"
|
|
|
|
|
|
|
173 |
else:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
return None, None, None
|
175 |
|
176 |
|
evals/datasets_/truthfulqa.py
CHANGED
@@ -48,58 +48,12 @@ async def load_truthfulqa(language_bcp_47, nr):
|
|
48 |
# Load from auto-translated dataset (same samples as translation)
|
49 |
ds = _load_dataset(slug_truthfulqa_autotranslated, language_bcp_47)
|
50 |
test_split = ds["test"] if "test" in ds else ds
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
# If requested index exceeds stored sample count, fall back to on-the-fly
|
55 |
-
return await load_truthfulqa_translated(language_bcp_47, nr)
|
56 |
else:
|
57 |
-
# Fallback to on-the-fly translation for missing languages/samples
|
58 |
-
return await load_truthfulqa_translated(language_bcp_47, nr)
|
59 |
-
|
60 |
-
async def load_truthfulqa_translated(language_bcp_47, nr):
|
61 |
-
"""
|
62 |
-
Load TruthfulQA data with on-the-fly Google translation.
|
63 |
-
"""
|
64 |
-
supported_languages = get_google_supported_languages()
|
65 |
-
if language_bcp_47 not in supported_languages:
|
66 |
return None, None, None
|
67 |
|
68 |
-
print(f"🔄 Translating TruthfulQA data to {language_bcp_47} on-the-fly...")
|
69 |
-
|
70 |
-
try:
|
71 |
-
# Load English TruthfulQA data
|
72 |
-
ds = _load_dataset(slug_uhura_truthfulqa, tags_uhura_truthfulqa["en"])
|
73 |
-
ds = ds.map(add_choices)
|
74 |
-
|
75 |
-
# Use the same 20 samples that the evaluation pipeline uses (indices 0-19)
|
76 |
-
if nr < 20:
|
77 |
-
task = ds["test"][nr] # Direct mapping to same sample
|
78 |
-
else:
|
79 |
-
# Fallback to sequential if nr exceeds our sample count
|
80 |
-
task = ds["test"][nr % len(ds["test"])]
|
81 |
-
|
82 |
-
# Translate question and choices
|
83 |
-
question_translated = await translate_google(task["question"], "en", language_bcp_47)
|
84 |
-
choices_translated = []
|
85 |
-
for choice in task["choices"]:
|
86 |
-
choice_translated = await translate_google(choice, "en", language_bcp_47)
|
87 |
-
choices_translated.append(choice_translated)
|
88 |
-
|
89 |
-
translated_task = {
|
90 |
-
"question": question_translated,
|
91 |
-
"choices": choices_translated,
|
92 |
-
"labels": task["labels"], # Keep original labels
|
93 |
-
}
|
94 |
-
|
95 |
-
return f"truthfulqa-translated-{language_bcp_47}", translated_task, "machine"
|
96 |
-
|
97 |
-
except Exception as e:
|
98 |
-
print(f"❌ Translation failed for {language_bcp_47}: {e}")
|
99 |
-
return None, None, None
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
def translate_truthfulqa(languages):
|
104 |
human_translated = [*tags_uhura_truthfulqa.keys()]
|
105 |
untranslated = [
|
|
|
48 |
# Load from auto-translated dataset (same samples as translation)
|
49 |
ds = _load_dataset(slug_truthfulqa_autotranslated, language_bcp_47)
|
50 |
test_split = ds["test"] if "test" in ds else ds
|
51 |
+
task = test_split[nr]
|
52 |
+
return slug_truthfulqa_autotranslated, task, "machine"
|
53 |
+
# TODO: add Okapi, TruthfulQA-X @Jonas
|
|
|
|
|
54 |
else:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
return None, None, None
|
56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
def translate_truthfulqa(languages):
|
58 |
human_translated = [*tags_uhura_truthfulqa.keys()]
|
59 |
untranslated = [
|
evals/tasks.py
CHANGED
@@ -120,32 +120,22 @@ Reply with only the topic name.
|
|
120 |
Text:
|
121 |
{test_paragraph.text}
|
122 |
"""
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
acc = (
|
136 |
-
int(
|
137 |
-
pred.startswith(true)
|
138 |
-
or (true in pred and not any(o in pred for o in others))
|
139 |
-
)
|
140 |
-
if pred
|
141 |
-
else 0
|
142 |
)
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
acc = 0
|
147 |
-
else:
|
148 |
-
raise e
|
149 |
return [
|
150 |
{
|
151 |
"model": model,
|
@@ -331,7 +321,6 @@ def format_multiple_choice_truthfulqa(item):
|
|
331 |
text = item["question"] + "\n\n"
|
332 |
for i, choice in enumerate(item["choices"]):
|
333 |
text += f"{letters[i]}: {choice}\n"
|
334 |
-
text += "|".join(letters[: len(item["choices"])]) + "?"
|
335 |
return text
|
336 |
|
337 |
|
|
|
120 |
Text:
|
121 |
{test_paragraph.text}
|
122 |
"""
|
123 |
+
pred = await complete(
|
124 |
+
model=model,
|
125 |
+
messages=[{"role": "user", "content": prompt}],
|
126 |
+
temperature=0,
|
127 |
+
max_tokens=30,
|
128 |
+
).lower().strip()
|
129 |
+
true = test_paragraph.topic.lower().strip()
|
130 |
+
others = [t for t in top_topics if t != true]
|
131 |
+
acc = (
|
132 |
+
int(
|
133 |
+
pred.startswith(true)
|
134 |
+
or (true in pred and not any(o in pred for o in others))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
)
|
136 |
+
if pred
|
137 |
+
else 0
|
138 |
+
)
|
|
|
|
|
|
|
139 |
return [
|
140 |
{
|
141 |
"model": model,
|
|
|
321 |
text = item["question"] + "\n\n"
|
322 |
for i, choice in enumerate(item["choices"]):
|
323 |
text += f"{letters[i]}: {choice}\n"
|
|
|
324 |
return text
|
325 |
|
326 |
|