David Pomerenke
commited on
Commit
·
eb1696c
1
Parent(s):
566c57e
Fix and refactor backend filtering
Browse files- evals/backend.py +73 -5
- evals/tables.py +0 -87
evals/backend.py
CHANGED
|
@@ -11,7 +11,74 @@ from fastapi.staticfiles import StaticFiles
|
|
| 11 |
|
| 12 |
from languages import languages
|
| 13 |
from models import models
|
| 14 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
app = FastAPI()
|
| 17 |
|
|
@@ -31,16 +98,17 @@ async def data(request: Request):
|
|
| 31 |
body = await request.body()
|
| 32 |
data = json.loads(body)
|
| 33 |
selected_languages = data.get("selectedLanguages", {})
|
| 34 |
-
df =
|
| 35 |
-
|
|
|
|
| 36 |
# lang_results = pd.merge(languages, lang_results, on="bcp_47", how="outer")
|
| 37 |
-
language_table = make_language_table(
|
| 38 |
datasets_df = pd.read_json("data/datasets.json")
|
| 39 |
countries = make_country_table(language_table)
|
| 40 |
if selected_languages:
|
| 41 |
# the filtering is only applied for the model table
|
| 42 |
df = df[df["bcp_47"].isin(lang["bcp_47"] for lang in selected_languages)]
|
| 43 |
-
model_table = make_model_table(
|
| 44 |
all_tables = {
|
| 45 |
"model_table": serialize(model_table),
|
| 46 |
"language_table": serialize(language_table),
|
|
|
|
| 11 |
|
| 12 |
from languages import languages
|
| 13 |
from models import models
|
| 14 |
+
from countries import make_country_table
|
| 15 |
+
|
| 16 |
+
def mean(lst):
|
| 17 |
+
return sum(lst) / len(lst) if lst else None
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def make_model_table(df, models):
|
| 21 |
+
df = (
|
| 22 |
+
df.groupby(["model", "task", "metric"])
|
| 23 |
+
.agg({"score": "mean", "bcp_47": "nunique"})
|
| 24 |
+
.reset_index()
|
| 25 |
+
)
|
| 26 |
+
df["task_metric"] = df["task"] + "_" + df["metric"]
|
| 27 |
+
df = df.drop(columns=["task", "metric"])
|
| 28 |
+
task_metrics = df["task_metric"].unique()
|
| 29 |
+
df = df.pivot(index="model", columns="task_metric", values="score").fillna(0)
|
| 30 |
+
df["average"] = df[task_metrics].mean(axis=1)
|
| 31 |
+
df = df.sort_values(by="average", ascending=False).reset_index()
|
| 32 |
+
df = pd.merge(df, models, left_on="model", right_on="id", how="left")
|
| 33 |
+
df["creation_date"] = df["creation_date"].dt.strftime("%Y-%m-%d")
|
| 34 |
+
df["rank"] = df.index + 1
|
| 35 |
+
df = df[
|
| 36 |
+
[
|
| 37 |
+
"rank",
|
| 38 |
+
"model",
|
| 39 |
+
"hf_id",
|
| 40 |
+
"creation_date",
|
| 41 |
+
"size",
|
| 42 |
+
"type",
|
| 43 |
+
"license",
|
| 44 |
+
"average",
|
| 45 |
+
*task_metrics,
|
| 46 |
+
]
|
| 47 |
+
]
|
| 48 |
+
return df
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
def make_language_table(df, languages):
|
| 52 |
+
df = (
|
| 53 |
+
df.groupby(["bcp_47", "task", "metric"])
|
| 54 |
+
.agg({"score": "mean", "model": "nunique"})
|
| 55 |
+
.reset_index()
|
| 56 |
+
)
|
| 57 |
+
df["task_metric"] = df["task"] + "_" + df["metric"]
|
| 58 |
+
df = df.drop(columns=["task", "metric"])
|
| 59 |
+
task_metrics = df["task_metric"].unique()
|
| 60 |
+
df = (
|
| 61 |
+
df.pivot(index="bcp_47", columns="task_metric", values="score")
|
| 62 |
+
.fillna(0)
|
| 63 |
+
.reset_index()
|
| 64 |
+
)
|
| 65 |
+
df["average"] = df[task_metrics].mean(axis=1)
|
| 66 |
+
df = pd.merge(languages, df, on="bcp_47", how="outer")
|
| 67 |
+
df = df.sort_values(by="speakers", ascending=False)
|
| 68 |
+
df = df[
|
| 69 |
+
[
|
| 70 |
+
"bcp_47",
|
| 71 |
+
"language_name",
|
| 72 |
+
"autonym",
|
| 73 |
+
"speakers",
|
| 74 |
+
"family",
|
| 75 |
+
"average",
|
| 76 |
+
"in_benchmark",
|
| 77 |
+
*task_metrics,
|
| 78 |
+
]
|
| 79 |
+
]
|
| 80 |
+
return df
|
| 81 |
+
|
| 82 |
|
| 83 |
app = FastAPI()
|
| 84 |
|
|
|
|
| 98 |
body = await request.body()
|
| 99 |
data = json.loads(body)
|
| 100 |
selected_languages = data.get("selectedLanguages", {})
|
| 101 |
+
df = (
|
| 102 |
+
results.groupby(["model", "bcp_47", "task", "metric"]).mean().reset_index()
|
| 103 |
+
)
|
| 104 |
# lang_results = pd.merge(languages, lang_results, on="bcp_47", how="outer")
|
| 105 |
+
language_table = make_language_table(df, languages)
|
| 106 |
datasets_df = pd.read_json("data/datasets.json")
|
| 107 |
countries = make_country_table(language_table)
|
| 108 |
if selected_languages:
|
| 109 |
# the filtering is only applied for the model table
|
| 110 |
df = df[df["bcp_47"].isin(lang["bcp_47"] for lang in selected_languages)]
|
| 111 |
+
model_table = make_model_table(df, models)
|
| 112 |
all_tables = {
|
| 113 |
"model_table": serialize(model_table),
|
| 114 |
"language_table": serialize(language_table),
|
evals/tables.py
DELETED
|
@@ -1,87 +0,0 @@
|
|
| 1 |
-
import pandas as pd
|
| 2 |
-
from countries import make_country_table
|
| 3 |
-
|
| 4 |
-
make_country_table = make_country_table
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
def aggregate(results):
|
| 8 |
-
results = (
|
| 9 |
-
results.groupby(["model", "bcp_47", "task", "metric"]).mean().reset_index()
|
| 10 |
-
)
|
| 11 |
-
lang_results = (
|
| 12 |
-
results.groupby(["bcp_47", "task", "metric"])
|
| 13 |
-
.agg({"score": "mean", "model": "nunique"})
|
| 14 |
-
.reset_index()
|
| 15 |
-
)
|
| 16 |
-
model_results = (
|
| 17 |
-
results.groupby(["model", "task", "metric"])
|
| 18 |
-
.agg({"score": "mean", "bcp_47": "nunique"})
|
| 19 |
-
.reset_index()
|
| 20 |
-
)
|
| 21 |
-
task_results = (
|
| 22 |
-
results.groupby(["task", "metric"])
|
| 23 |
-
.agg({"score": "mean", "bcp_47": "nunique", "model": "nunique"})
|
| 24 |
-
.reset_index()
|
| 25 |
-
)
|
| 26 |
-
return results, lang_results, model_results, task_results
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
def mean(lst):
|
| 30 |
-
return sum(lst) / len(lst) if lst else None
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
def make_model_table(df, models):
|
| 34 |
-
df["task_metric"] = df["task"] + "_" + df["metric"]
|
| 35 |
-
df = df.drop(columns=["task", "metric"])
|
| 36 |
-
task_metrics = df["task_metric"].unique()
|
| 37 |
-
df = df.pivot(index="model", columns="task_metric", values="score").fillna(0)
|
| 38 |
-
df["average"] = df[task_metrics].mean(axis=1)
|
| 39 |
-
df = df.sort_values(by="average", ascending=False).reset_index()
|
| 40 |
-
for row in [*task_metrics, "average"]:
|
| 41 |
-
df[row] = df[row].round(2)
|
| 42 |
-
df = pd.merge(df, models, left_on="model", right_on="id", how="left")
|
| 43 |
-
df["creation_date"] = df["creation_date"].dt.strftime("%Y-%m-%d")
|
| 44 |
-
df["rank"] = df.index + 1
|
| 45 |
-
df = df[
|
| 46 |
-
[
|
| 47 |
-
"rank",
|
| 48 |
-
"model",
|
| 49 |
-
"hf_id",
|
| 50 |
-
"creation_date",
|
| 51 |
-
"size",
|
| 52 |
-
"type",
|
| 53 |
-
"license",
|
| 54 |
-
"average",
|
| 55 |
-
*task_metrics,
|
| 56 |
-
]
|
| 57 |
-
]
|
| 58 |
-
return df
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
def make_language_table(df, languages):
|
| 62 |
-
df["task_metric"] = df["task"] + "_" + df["metric"]
|
| 63 |
-
df = df.drop(columns=["task", "metric"])
|
| 64 |
-
task_metrics = df["task_metric"].unique()
|
| 65 |
-
df = (
|
| 66 |
-
df.pivot(index="bcp_47", columns="task_metric", values="score")
|
| 67 |
-
.fillna(0)
|
| 68 |
-
.reset_index()
|
| 69 |
-
)
|
| 70 |
-
df["average"] = df[task_metrics].mean(axis=1)
|
| 71 |
-
for row in [*task_metrics, "average"]:
|
| 72 |
-
df[row] = df[row].round(2)
|
| 73 |
-
df = pd.merge(languages, df, on="bcp_47", how="outer")
|
| 74 |
-
df = df.sort_values(by="speakers", ascending=False)
|
| 75 |
-
df = df[
|
| 76 |
-
[
|
| 77 |
-
"bcp_47",
|
| 78 |
-
"language_name",
|
| 79 |
-
"autonym",
|
| 80 |
-
"speakers",
|
| 81 |
-
"family",
|
| 82 |
-
"average",
|
| 83 |
-
"in_benchmark",
|
| 84 |
-
*task_metrics,
|
| 85 |
-
]
|
| 86 |
-
]
|
| 87 |
-
return df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|