Spaces:
Runtime error
Runtime error
| // load the model's weights from a file | |
| bool mpt_model_load(const std::string & fname, mpt_model & model, gpt_vocab & vocab, int gpulayers) { | |
| printf("%s: loading model from '%s' - please wait ...\n", __func__, fname.c_str()); | |
| auto fin = std::ifstream(fname, std::ios::binary); | |
| if (!fin) { | |
| fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str()); | |
| return false; | |
| } | |
| // verify magic | |
| { | |
| uint32_t magic; | |
| fin.read((char *)&magic, sizeof(magic)); | |
| if (magic != 0x67676d6c) { | |
| fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str()); | |
| return false; | |
| } | |
| } | |
| // load hparams | |
| { | |
| auto & hparams = model.hparams; | |
| fin.read((char *) &hparams.d_model, sizeof(hparams.d_model)); | |
| fin.read((char *) &hparams.max_seq_len, sizeof(hparams.max_seq_len)); | |
| fin.read((char *) &hparams.n_heads, sizeof(hparams.n_heads)); | |
| fin.read((char *) &hparams.n_layers, sizeof(hparams.n_layers)); | |
| fin.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab)); | |
| fin.read((char *) &hparams.alibi_bias_max, sizeof(hparams.alibi_bias_max)); | |
| fin.read((char *) &hparams.clip_qkv, sizeof(hparams.clip_qkv)); | |
| fin.read((char *) &hparams.ftype, sizeof(hparams.ftype)); | |
| hparams.n_ctx = std::min(hparams.max_seq_len, hparams.n_ctx); | |
| const int32_t qntvr = hparams.ftype / GGML_QNT_VERSION_FACTOR; | |
| printf("%s: d_model = %d\n", __func__, hparams.d_model); | |
| printf("%s: max_seq_len = %d\n", __func__, hparams.max_seq_len); | |
| printf("%s: n_ctx = %d\n", __func__, hparams.n_ctx); | |
| printf("%s: n_heads = %d\n", __func__, hparams.n_heads); | |
| printf("%s: n_layers = %d\n", __func__, hparams.n_layers); | |
| printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab); | |
| printf("%s: alibi_bias_max = %f\n", __func__, hparams.alibi_bias_max); | |
| printf("%s: clip_qkv = %f\n", __func__, hparams.clip_qkv); | |
| printf("%s: ftype = %d\n", __func__, hparams.ftype); | |
| printf("%s: qntvr = %d\n", __func__, qntvr); | |
| hparams.ftype %= GGML_QNT_VERSION_FACTOR; | |
| } | |
| // load vocab | |
| { | |
| const int32_t n_vocab = model.hparams.n_vocab; | |
| std::string word; | |
| std::vector<char> buf(128); | |
| for (int i = 0; i < n_vocab; i++) { | |
| uint32_t len; | |
| fin.read((char *) &len, sizeof(len)); | |
| buf.resize(len); | |
| fin.read((char *) buf.data(), len); | |
| word.assign(buf.data(), len); | |
| // Convert token from utf-8 | |
| // std::wstring word_multibytes = convert_to_wstring(word); | |
| // if(word_multibytes!=L"") | |
| // { | |
| // word.resize(word_multibytes.size()); | |
| // for (int w = 0; w < word_multibytes.size(); w++) { | |
| // word[w] = uint8_t(word_multibytes[w]); | |
| // } | |
| // } | |
| vocab.token_to_id[word] = i; | |
| vocab.id_to_token[i] = word; | |
| } | |
| } | |
| // for the big tensors, we have the option to store the data in 16-bit | |
| // floats or quantized in order to save memory and also to speed up the | |
| // computation | |
| ggml_type wtype = ggml_ftype_to_ggml_type((ggml_ftype)(model.hparams.ftype)); | |
| if (wtype == GGML_TYPE_COUNT) { | |
| fprintf(stderr, "%s: invalid model file '%s' (bad ftype value %d)\n", __func__, fname.c_str(), | |
| model.hparams.ftype); | |
| return false; | |
| } | |
| auto & ctx = model.ctx; | |
| size_t ctx_size = 0; | |
| const auto & hparams = model.hparams; | |
| const size_t n_ctx = hparams.n_ctx; | |
| { | |
| const size_t n_embd = hparams.d_model; | |
| const size_t n_layer = hparams.n_layers; | |
| const size_t n_vocab = hparams.n_vocab; | |
| ctx_size += n_embd * n_vocab * ggml_type_sizef(wtype); // wte_weight | |
| ctx_size += n_embd * ggml_type_sizef(GGML_TYPE_F32); // norm_f_weight | |
| ctx_size += n_layer * (n_embd * ggml_type_sizef(GGML_TYPE_F32)); // ln_1_weight | |
| ctx_size += n_layer * (3 * n_embd * n_embd * ggml_type_sizef(wtype)); // attn_Wqkv_weight | |
| ctx_size += n_layer * (n_embd * n_embd * ggml_type_sizef(wtype)); // attn_out_proj_weight | |
| ctx_size += n_layer * (n_embd * ggml_type_sizef(GGML_TYPE_F32)); // ln_2_weight | |
| ctx_size += n_layer * (4 * n_embd * n_embd * ggml_type_sizef(wtype)); // mlp_mlp_up_weight | |
| ctx_size += n_layer * (n_embd * n_embd * 4 * ggml_type_sizef(wtype)); // mlp_mlp_down_weight | |
| ctx_size += n_ctx * n_layer * n_embd * ggml_type_sizef(GGML_TYPE_F16); // memory_k | |
| ctx_size += n_ctx * n_layer * n_embd * ggml_type_sizef(GGML_TYPE_F16); // memory_v | |
| ctx_size += (6 + 6 * n_layer) * 512; // object overhead | |
| printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size / (1024.0 * 1024.0)); | |
| } | |
| // create the ggml context | |
| { | |
| struct ggml_init_params params; | |
| params.mem_size = ctx_size; | |
| params.mem_buffer = NULL; | |
| params.no_alloc = false; | |
| model.ctx = ggml_init(params); | |
| if (!model.ctx) { | |
| fprintf(stderr, "%s: ggml_init() failed\n", __func__); | |
| return false; | |
| } | |
| } | |
| // prepare memory for the weights | |
| { | |
| const auto & hparams = model.hparams; | |
| const size_t n_embd = hparams.d_model; | |
| const size_t n_layer = hparams.n_layers; | |
| const size_t n_vocab = hparams.n_vocab; | |
| model.layers.resize(n_layer); | |
| model.wte_weight = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab); | |
| model.norm_f_weight = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); | |
| // map by name | |
| model.tensors["transformer.wte.weight"] = model.wte_weight; | |
| model.tensors["transformer.norm_f.weight"] = model.norm_f_weight; | |
| for (int i = 0; i < (int) n_layer; ++i) { | |
| auto & layer = model.layers[i]; | |
| layer.norm_1_weight = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); | |
| layer.c_attn_wqkv_weight = ggml_new_tensor_2d(ctx, wtype, n_embd, 3 * n_embd); | |
| layer.c_attn_out_proj_weight = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd); | |
| layer.norm_2_weight = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); | |
| layer.ffn_up_proj = ggml_new_tensor_2d(ctx, wtype, n_embd, 4 * n_embd); | |
| layer.ffn_down_proj = ggml_new_tensor_2d(ctx, wtype, 4 * n_embd, n_embd); | |
| // map by name | |
| model.tensors["transformer.blocks." + std::to_string(i) + ".norm_1.weight"] = layer.norm_1_weight; | |
| model.tensors["transformer.blocks." + std::to_string(i) + ".attn.Wqkv.weight"] = layer.c_attn_wqkv_weight; | |
| model.tensors["transformer.blocks." + std::to_string(i) + ".attn.out_proj.weight"] = layer.c_attn_out_proj_weight; | |
| model.tensors["transformer.blocks." + std::to_string(i) + ".norm_2.weight"] = layer.norm_2_weight; | |
| model.tensors["transformer.blocks." + std::to_string(i) + ".ffn.up_proj.weight"] = layer.ffn_up_proj; | |
| model.tensors["transformer.blocks." + std::to_string(i) + ".ffn.down_proj.weight"] = layer.ffn_down_proj; | |
| } | |
| } | |
| // key + value memory | |
| { | |
| const auto & hparams = model.hparams; | |
| const size_t n_embd = hparams.d_model; | |
| const size_t n_layer = hparams.n_layers; | |
| const int64_t n_mem = n_layer * n_ctx; | |
| const int64_t n_elements = n_embd * n_mem; | |
| model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements); | |
| model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements); | |
| const size_t memory_size = ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v); | |
| printf("%s: memory_size = %8.2f MB, n_mem = %" PRId64 "\n", __func__, memory_size / 1024.0 / 1024.0, n_mem); | |
| } | |
| // load weights | |
| { | |
| int n_tensors = 0; | |
| size_t total_size = 0; | |
| printf("%s: ", __func__); | |
| while (true) { | |
| int32_t n_dims; | |
| int32_t length; | |
| int32_t ttype; | |
| fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims)); | |
| fin.read(reinterpret_cast<char *>(&length), sizeof(length)); | |
| fin.read(reinterpret_cast<char *>(&ttype), sizeof(ttype)); | |
| if (fin.eof()) { | |
| break; | |
| } | |
| int32_t nelements = 1; | |
| int32_t ne[2] = {1, 1}; | |
| for (int i = 0; i < n_dims; ++i) { | |
| fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i])); | |
| nelements *= ne[i]; | |
| } | |
| std::string name(length, 0); | |
| fin.read(&name[0], length); | |
| if (model.tensors.find(name.data()) == model.tensors.end()) { | |
| fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data()); | |
| return false; | |
| } | |
| auto tensor = model.tensors[name.data()]; | |
| if (ggml_nelements(tensor) != nelements) { | |
| fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data()); | |
| return false; | |
| } | |
| if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) { | |
| fprintf(stderr, | |
| "%s: tensor '%s' has wrong shape in model file: got [%5d, " | |
| "%5d], expected [%5d, %5d]\n", | |
| __func__, name.data(), (int)tensor->ne[0], (int)tensor->ne[1], ne[0], ne[1]); | |
| return false; | |
| } | |
| // for debugging | |
| if (0) { | |
| printf("%24s - [%5d, %5d], type = %6s, %6.2f MB, %9zu bytes\n", name.data(), ne[0], ne[1], | |
| ggml_type_name(ggml_type(ttype)), ggml_nbytes(tensor) / 1024.0 / 1024.0, ggml_nbytes(tensor)); | |
| } | |
| const size_t bpe = ggml_type_size(ggml_type(ttype)); | |
| if ((nelements * bpe) / ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) { | |
| fprintf(stderr, | |
| "%s: tensor '%s' has wrong size in model file: got %zu, " | |
| "expected %zu\n", | |
| __func__, name.data(), ggml_nbytes(tensor), nelements * bpe); | |
| return false; | |
| } | |
| fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor)); | |
| total_size += ggml_nbytes(tensor); | |
| if (++n_tensors % 8 == 0) { | |
| printf("."); | |
| fflush(stdout); | |
| } | |
| } | |
| printf(" done\n"); | |
| printf("%s: model size = %8.2f MB / num tensors = %d\n", __func__, total_size / 1024.0 / 1024.0, n_tensors); | |
| } | |
| fin.close(); | |
| //gpu offload | |
| if(gpulayers>0) | |
| { | |
| const auto & hparams = model.hparams; | |
| size_t vram_total = 0; | |
| const int n_gpu = std::min(gpulayers, int(hparams.n_layers)); | |
| fprintf(stderr, "%s: [GPU] offloading %d layers to GPU\n", __func__, n_gpu); | |
| for (int i = 0; i < n_gpu; ++i) { | |
| const auto & layer = model.layers[i]; | |
| layer.ffn_up_proj->backend = GGML_BACKEND_GPU; | |
| layer.ffn_down_proj->backend = GGML_BACKEND_GPU; | |
| layer.c_attn_wqkv_weight->backend = GGML_BACKEND_GPU; | |
| layer.c_attn_out_proj_weight->backend = GGML_BACKEND_GPU; | |
| ggml_cl_transform_tensor(layer.ffn_up_proj->data,layer.ffn_up_proj); vram_total += ggml_nbytes(layer.ffn_up_proj); | |
| ggml_cl_transform_tensor(layer.ffn_down_proj->data,layer.ffn_down_proj); vram_total += ggml_nbytes(layer.ffn_down_proj); | |
| ggml_cl_transform_tensor(layer.c_attn_wqkv_weight->data,layer.c_attn_wqkv_weight); vram_total += ggml_nbytes(layer.c_attn_wqkv_weight); | |
| ggml_cl_transform_tensor(layer.c_attn_out_proj_weight->data,layer.c_attn_out_proj_weight); vram_total += ggml_nbytes(layer.c_attn_out_proj_weight); | |
| ggml_cuda_transform_tensor(layer.ffn_up_proj->data,layer.ffn_up_proj); vram_total += ggml_nbytes(layer.ffn_up_proj); | |
| ggml_cuda_transform_tensor(layer.ffn_down_proj->data,layer.ffn_down_proj); vram_total += ggml_nbytes(layer.ffn_down_proj); | |
| ggml_cuda_transform_tensor(layer.c_attn_wqkv_weight->data,layer.c_attn_wqkv_weight); vram_total += ggml_nbytes(layer.c_attn_wqkv_weight); | |
| ggml_cuda_transform_tensor(layer.c_attn_out_proj_weight->data,layer.c_attn_out_proj_weight); vram_total += ggml_nbytes(layer.c_attn_out_proj_weight); | |
| } | |
| fprintf(stderr, "%s: [GPU] total VRAM used: %zu MB\n", __func__, vram_total / 1024 / 1024); | |
| } | |
| return true; | |
| } | |
| // evaluate the transformer | |
| // | |
| // - model: the model | |
| // - n_threads: number of threads to use | |
| // - n_past: the context size so far | |
| // - embd_inp: the embeddings of the tokens in the context | |
| // - embd_w: the predicted logits for the next token | |
| // | |
| bool mpt_eval(const mpt_model & model, const int n_threads, const int n_past, | |
| const std::vector<gpt_vocab::id> & embd_inp, std::vector<float> & embd_w, | |
| bool logits_all, size_t & mem_per_token, bool use_scratch) { | |
| const int N = embd_inp.size(); | |
| const auto & hparams = model.hparams; | |
| const int n_embd = hparams.d_model; | |
| const int n_layer = hparams.n_layers; | |
| const int n_head = hparams.n_heads; | |
| const int n_vocab = hparams.n_vocab; | |
| const int n_ctx = hparams.n_ctx; | |
| static size_t buf_size = 256u * 1024 * 1024; | |
| static void * buf = malloc(buf_size); | |
| // use 2 scratch buffers | |
| // TODO: very hacky solution - reimplement in a more elegant way | |
| //MPT 30B needs more scratch memory | |
| static size_t scr0_size = (n_embd>=7168?2048u:1024u)*1024*1024; | |
| static size_t scr1_size = (n_embd>=7168?2048u:1024u)*1024*1024; | |
| static void * scr0 = malloc(scr0_size); | |
| static void * scr1 = malloc(scr1_size); | |
| if (mem_per_token > 0 && (mem_per_token*N*2 + 64u*1024*1024) > buf_size) { | |
| const size_t buf_size_new = 320u*1024*1024 + 1.2*(mem_per_token*N); // add 10% to account for ggml object overhead | |
| // printf("\n%s: reallocating buffer from %zu to %zu bytes\n", __func__, | |
| // buf_size, buf_size_new); | |
| // reallocate | |
| if (buf_size_new > buf_size) | |
| { | |
| buf_size = buf_size_new; | |
| buf = realloc(buf, buf_size); | |
| if (buf == nullptr) { | |
| fprintf(stderr, "%s: failed to allocate %zu bytes. Try reducing batch size.\n", __func__, buf_size); | |
| return false; | |
| } | |
| } | |
| } | |
| struct ggml_init_params params; | |
| params.mem_size = buf_size; | |
| params.mem_buffer = buf; | |
| params.no_alloc = false; | |
| struct ggml_context * ctx0 = ggml_init(params); | |
| struct ggml_cgraph gf = {}; | |
| struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); | |
| memcpy(embd->data, embd_inp.data(), N * ggml_element_size(embd)); | |
| struct ggml_tensor * inpL = ggml_get_rows(ctx0, model.wte_weight, embd); | |
| for (int il = 0; il < n_layer; ++il) { | |
| struct ggml_tensor * cur; | |
| if(use_scratch){ | |
| ggml_set_scratch(ctx0, { 0, scr0_size, scr0, }); | |
| } | |
| // a = self.ln_1(x) | |
| { | |
| cur = ggml_norm(ctx0, inpL); | |
| cur = ggml_mul(ctx0, ggml_repeat(ctx0, model.layers[il].norm_1_weight, cur), cur); | |
| } | |
| // self-attention | |
| // b, _, past_key_value = self.attn(a, past_key_value=past_key_value, | |
| // attn_bias=attn_bias, attention_mask=attention_mask, | |
| // is_causal=is_causal) | |
| { | |
| // compute QKV | |
| cur = ggml_mul_mat(ctx0, model.layers[il].c_attn_wqkv_weight, cur); | |
| if (model.hparams.clip_qkv > 0.0f) { | |
| cur = ggml_clamp(ctx0, cur, -model.hparams.clip_qkv, model.hparams.clip_qkv); | |
| } | |
| struct ggml_tensor * Qcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 0 * sizeof(float) * n_embd); | |
| struct ggml_tensor * Kcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 1 * sizeof(float) * n_embd); | |
| struct ggml_tensor * Vcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 2 * sizeof(float) * n_embd); | |
| // store key and value to memory | |
| { | |
| struct ggml_tensor * k = | |
| ggml_view_1d(ctx0, model.memory_k, N * n_embd, | |
| (ggml_element_size(model.memory_k) * n_embd) * (il * n_ctx + n_past)); | |
| struct ggml_tensor * v = | |
| ggml_view_1d(ctx0, model.memory_v, N * n_embd, | |
| (ggml_element_size(model.memory_v) * n_embd) * (il * n_ctx + n_past)); | |
| ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k)); | |
| ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v)); | |
| } | |
| // Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0, | |
| // 2, 1, 3) [64, N, 12] | |
| struct ggml_tensor * Q = ggml_permute( | |
| ctx0, ggml_cpy(ctx0, Qcur, ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd / n_head, n_head, N)), 0, 2, | |
| 1, 3); | |
| // K = Kmem.view(n_embd/n_head, n_head, n_past + N).permute(0, 2, 1, | |
| // 3) [64, n_past + N, 12] | |
| struct ggml_tensor * K = | |
| ggml_permute(ctx0, | |
| ggml_reshape_3d(ctx0, | |
| ggml_view_1d(ctx0, model.memory_k, (n_past + N) * n_embd, | |
| il * n_ctx * ggml_element_size(model.memory_k) * n_embd), | |
| n_embd / n_head, n_head, n_past + N), | |
| 0, 2, 1, 3); | |
| // K * Q | |
| struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); | |
| // KQ_scaled = KQ / sqrt(n_embd/n_head) | |
| struct ggml_tensor * KQ_scaled = | |
| ggml_scale(ctx0, KQ, ggml_new_f32(ctx0, 1.0f / sqrt(float(n_embd) / n_head))); | |
| struct ggml_tensor * KQ_scaled_alibi = | |
| ggml_alibi(ctx0, KQ_scaled, n_past, n_head, model.hparams.alibi_bias_max); | |
| // KQ_masked = mask_past(KQ_scaled) | |
| struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled_alibi, n_past); | |
| // KQ = soft_max(KQ_masked) | |
| struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked); | |
| // V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1, | |
| // 2, 0, 3).contiguous() [n_past + N, 64, 12] | |
| struct ggml_tensor * V_trans = ggml_cpy( | |
| ctx0, | |
| ggml_permute(ctx0, | |
| ggml_reshape_3d(ctx0, | |
| ggml_view_1d(ctx0, model.memory_v, (n_past + N) * n_embd, | |
| il * n_ctx * ggml_element_size(model.memory_v) * n_embd), | |
| n_embd / n_head, n_head, n_past + N), | |
| 1, 2, 0, 3), | |
| ggml_new_tensor_3d(ctx0, model.memory_v->type, n_past + N, n_embd / n_head, n_head)); | |
| // KQV = transpose(V) * KQ_soft_max | |
| struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_trans, KQ_soft_max); | |
| // KQV_merged = KQV.permute(0, 2, 1, 3) | |
| struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); | |
| // cur = KQV_merged.contiguous().view(n_embd, N) | |
| cur = ggml_cpy(ctx0, KQV_merged, ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N)); | |
| // projection | |
| { cur = ggml_mul_mat(ctx0, model.layers[il].c_attn_out_proj_weight, cur); } | |
| } | |
| inpL = ggml_add(ctx0, inpL, cur); | |
| if(use_scratch){ | |
| ggml_set_scratch(ctx0, { 0, scr1_size, scr1, }); | |
| } | |
| // m = self.ln_2(x) | |
| { | |
| cur = ggml_norm(ctx0, inpL); | |
| cur = ggml_mul(ctx0, ggml_repeat(ctx0, model.layers[il].norm_2_weight, cur), cur); | |
| } | |
| // n = self.mlp(m) | |
| { | |
| cur = ggml_mul_mat(ctx0, model.layers[il].ffn_up_proj, cur); | |
| // GELU activation | |
| cur = ggml_gelu(ctx0, cur); | |
| // projection | |
| // cur = proj_w*cur + proj_b | |
| cur = ggml_mul_mat(ctx0, model.layers[il].ffn_down_proj, cur); | |
| } | |
| // x = x + n | |
| inpL = ggml_add(ctx0, inpL, cur); | |
| } | |
| if(use_scratch){ | |
| ggml_set_scratch(ctx0, { 0, scr0_size, scr0, }); | |
| } | |
| // norm | |
| { | |
| inpL = ggml_norm(ctx0, inpL); | |
| // inpL = ln_f_g*inpL | |
| inpL = ggml_mul(ctx0, ggml_repeat(ctx0, model.norm_f_weight, inpL), inpL); | |
| } | |
| if(use_scratch){ | |
| ggml_set_scratch(ctx0, { 0, 0, nullptr, }); | |
| } | |
| // output embedding weight tied to input embedding | |
| inpL = ggml_mul_mat(ctx0, model.wte_weight, inpL); | |
| // logits -> probs | |
| // inpL = ggml_soft_max(ctx0, inpL); | |
| // run the computation | |
| ggml_build_forward_expand(&gf, inpL); | |
| kcpp_graph_compute_helper(&gf, n_threads); | |
| // std::cout << "Qcur" << std::endl; | |
| // print_tensor(Qcur); | |
| // if (n_past%100 == 0) { | |
| // ggml_graph_print(&gf); | |
| // ggml_graph_dump_dot(&gf, NULL, "mpt-model.dot"); | |
| // } | |
| if (logits_all) { | |
| // return result for all tokens | |
| embd_w.resize(n_vocab *N); | |
| memcpy(embd_w.data(), (float *)ggml_get_data(inpL) , sizeof(float) * n_vocab * N); | |
| } else { | |
| // return result for just the last token | |
| embd_w.resize(n_vocab); | |
| memcpy(embd_w.data(), (float *)ggml_get_data(inpL) + (n_vocab * (N - 1)), sizeof(float) * n_vocab); | |
| } | |
| if (mem_per_token == 0) { | |
| mem_per_token = ggml_used_mem(ctx0) / N; | |
| } | |
| // printf("used_mem = %zu\n", ggml_used_mem(ctx0)); | |
| ggml_free(ctx0); | |
| return true; | |
| } | |