Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,48 +2,27 @@ import gradio as gr
|
|
2 |
from textattack.attack_recipes import TextFoolerJin2019
|
3 |
from textattack.models.wrappers import HuggingFaceModelWrapper
|
4 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
5 |
-
import textattack
|
6 |
import torch
|
7 |
|
8 |
-
|
9 |
model_name = "textattack/distilbert-base-uncased-SST-2"
|
10 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
11 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
12 |
|
13 |
-
|
14 |
model_wrapper = HuggingFaceModelWrapper(model, tokenizer)
|
15 |
|
16 |
-
|
17 |
attack = TextFoolerJin2019.build(model_wrapper)
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
result = attack.attack(input_text, ground_truth_output=1)
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
|
|
|
|
|
28 |
|
29 |
-
# Check the status of the result
|
30 |
-
if result.goal_status == textattack.shared.AttackResultStatus.SUCCEEDED:
|
31 |
-
attack_info += f"Attack Succeeded!\nOriginal Text: {input_text}\nModified Text: {result.attacked_text.text}\n"
|
32 |
-
elif result.goal_status == textattack.shared.AttackResultStatus.SKIPPED:
|
33 |
-
skipped_info += f"Skipped Text: {result.attacked_text.text}\n"
|
34 |
-
|
35 |
-
# Format the output
|
36 |
-
output = f"TextAttack Results:\n{attack_info}\nSkipped Details:\n{skipped_info}"
|
37 |
-
print(output) # Debugging
|
38 |
-
return output
|
39 |
-
|
40 |
-
except Exception as e:
|
41 |
-
error_message = f"An error occurred: {str(e)}"
|
42 |
-
print(error_message) # Debugging
|
43 |
-
return error_message
|
44 |
-
|
45 |
-
# Gradio UI
|
46 |
-
gr.Interface(fn=run_attack,
|
47 |
-
inputs=gr.Textbox(lines=4, placeholder="Enter sentence to attack..."),
|
48 |
-
outputs="text",
|
49 |
-
title="TextAttack Demo on Hugging Face Model").launch()
|
|
|
2 |
from textattack.attack_recipes import TextFoolerJin2019
|
3 |
from textattack.models.wrappers import HuggingFaceModelWrapper
|
4 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
|
|
5 |
import torch
|
6 |
|
7 |
+
Load Hugging Face model (e.g., distilbert for demo)
|
8 |
model_name = "textattack/distilbert-base-uncased-SST-2"
|
9 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
10 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
11 |
|
12 |
+
Wrap model for TextAttack
|
13 |
model_wrapper = HuggingFaceModelWrapper(model, tokenizer)
|
14 |
|
15 |
+
Load Attack
|
16 |
attack = TextFoolerJin2019.build(model_wrapper)
|
17 |
|
18 |
+
Function to run attack
|
19 |
+
def run_attack(input_text):
|
20 |
+
result = attack.attack(input_text, ground_truth_output=1)
|
21 |
+
return str(result)
|
|
|
22 |
|
23 |
+
Gradio UI
|
24 |
+
gr.Interface(fn=run_attack,
|
25 |
+
inputs=gr.Textbox(lines=4, placeholder="Enter sentence to attack..."),
|
26 |
+
outputs="text",
|
27 |
+
title="TextAttack Demo on Hugging Face Model").launch()
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|