Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 27,273 Bytes
9b6b78e 35ec840 645ebcd 9b6b78e 35ec840 6f633b9 6b3fd54 6f633b9 048ba10 35ec840 6b3fd54 35ec840 6b3fd54 35ec840 6b3fd54 35ec840 6b3fd54 35ec840 b5535a6 afb020d f7bf3a5 afb020d 35ec840 048ba10 b5535a6 048ba10 b5535a6 048ba10 35ec840 645ebcd ee0920f 645ebcd 6b3fd54 ee0920f 048ba10 ee0920f 048ba10 ee0920f 048ba10 ee0920f 048ba10 ee0920f 645ebcd 048ba10 ee0920f 645ebcd ee0920f 645ebcd 6b3fd54 645ebcd f7bf3a5 b5535a6 f7bf3a5 b5535a6 f7bf3a5 b5535a6 6b3fd54 35ec840 afb020d e230859 6f8e4f9 645ebcd 0002555 f150216 9833d94 0002555 645ebcd 0002555 645ebcd e230859 f150216 e230859 0002555 645ebcd 0002555 e230859 645ebcd e230859 645ebcd 0002555 645ebcd e230859 0002555 645ebcd e230859 9589e41 5b9d833 9589e41 5b9d833 4ce50e8 6f633b9 35ec840 6f633b9 35ec840 6f633b9 35ec840 d6137ae 6f633b9 35ec840 17ab651 645ebcd d6137ae 645ebcd d6137ae 28515bf d6137ae 645ebcd 6f633b9 645ebcd 6f633b9 6b3fd54 6f633b9 6b3fd54 6f633b9 35ec840 6f8e4f9 7f6973e 6f633b9 6f8e4f9 6f633b9 35ec840 d6137ae 6f633b9 645ebcd 0002555 35ec840 d6137ae 0002555 645ebcd 6f633b9 645ebcd 6f633b9 d6137ae 6f633b9 0002555 6f633b9 9833d94 6b3fd54 7f6973e 6b3fd54 645ebcd 35ec840 6b3fd54 048ba10 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 |
import gradio as gr
import requests
import io
import random
import os
import time
from PIL import Image
import json
# Get API token from environment variable
HF_TOKEN = os.getenv("HF_TOKEN")
if not HF_TOKEN:
raise ValueError("HF_TOKEN environment variable is not set")
def query(
prompt,
model,
custom_lora,
negative_prompt="", # โ ๊ธฐ์กด is_negative=False โ negative_prompt="" ๋ก ๋ณ๊ฒฝ
steps=35,
cfg_scale=7,
sampler="DPM++ 2M Karras",
seed=-1,
strength=0.7,
width=1024,
height=1024
):
print("Starting query function...")
if not prompt:
raise gr.Error("Prompt cannot be empty")
# Set headers with API token
headers = {"Authorization": f"Bearer {HF_TOKEN}"}
# Generate a unique key for tracking
key = random.randint(0, 999)
# Enhance prompt
prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect."
print(f'Generation {key}: {prompt}')
try:
# Set API URL based on model selection
if custom_lora.strip():
API_URL = f"https://api-inference.huggingface.co/models/{custom_lora.strip()}"
else:
if model == 'Stable Diffusion XL':
API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-xl-base-1.0"
elif model == 'FLUX.1 [Dev]':
API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-dev"
elif model == 'FLUX.1 [Schnell]':
API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-schnell"
elif model == 'Flux Logo Design':
API_URL = "https://api-inference.huggingface.co/models/Shakker-Labs/FLUX.1-dev-LoRA-Logo-Design"
prompt = f"wablogo, logo, Minimalist, {prompt}"
elif model == 'Flux Uncensored':
API_URL = "https://api-inference.huggingface.co/models/enhanceaiteam/Flux-uncensored"
elif model == 'Flux Uncensored V2':
API_URL = "https://api-inference.huggingface.co/models/enhanceaiteam/Flux-Uncensored-V2"
elif model == 'Flux Tarot Cards':
API_URL = "https://api-inference.huggingface.co/models/prithivMLmods/Ton618-Tarot-Cards-Flux-LoRA"
prompt = f"Tarot card, {prompt}"
elif model == 'Pixel Art Sprites':
API_URL = "https://api-inference.huggingface.co/models/sWizad/pokemon-trainer-sprites-pixelart-flux"
prompt = f"a pixel image, {prompt}"
elif model == '3D Sketchfab':
API_URL = "https://api-inference.huggingface.co/models/prithivMLmods/Castor-3D-Sketchfab-Flux-LoRA"
prompt = f"3D Sketchfab, {prompt}"
elif model == 'Retro Comic Flux':
API_URL = "https://api-inference.huggingface.co/models/renderartist/retrocomicflux"
prompt = f"c0m1c, comic book panel, {prompt}"
elif model == 'Caricature':
API_URL = "https://api-inference.huggingface.co/models/TheAwakenOne/caricature"
prompt = f"CCTUR3, {prompt}"
elif model == 'Huggieverse':
API_URL = "https://api-inference.huggingface.co/models/Chunte/flux-lora-Huggieverse"
prompt = f"HGGRE, {prompt}"
elif model == 'Propaganda Poster':
API_URL = "https://api-inference.huggingface.co/models/AlekseyCalvin/Propaganda_Poster_Schnell_by_doctor_diffusion"
prompt = f"propaganda poster, {prompt}"
elif model == 'Flux Game Assets V2':
API_URL = "https://api-inference.huggingface.co/models/gokaygokay/Flux-Game-Assets-LoRA-v2"
prompt = f"wbgmsst, white background, {prompt}"
elif model == 'SoftPasty Flux':
API_URL = "https://api-inference.huggingface.co/models/alvdansen/softpasty-flux-dev"
prompt = f"araminta_illus illustration style, {prompt}"
elif model == 'Flux Stickers':
API_URL = "https://api-inference.huggingface.co/models/diabolic6045/Flux_Sticker_Lora"
prompt = f"5t1cker 5ty1e, {prompt}"
elif model == 'Flux Animex V2':
API_URL = "https://api-inference.huggingface.co/models/strangerzonehf/Flux-Animex-v2-LoRA"
prompt = f"Animex, {prompt}"
elif model == 'Flux Animeo V1':
API_URL = "https://api-inference.huggingface.co/models/strangerzonehf/Flux-Animeo-v1-LoRA"
prompt = f"Animeo, {prompt}"
elif model == 'Movie Board':
API_URL = "https://api-inference.huggingface.co/models/prithivMLmods/Flux.1-Dev-Movie-Boards-LoRA"
prompt = f"movieboard, {prompt}"
elif model == 'Purple Dreamy':
API_URL = "https://api-inference.huggingface.co/models/prithivMLmods/Purple-Dreamy-Flux-LoRA"
prompt = f"Purple Dreamy, {prompt}"
elif model == 'PS1 Style Flux':
API_URL = "https://api-inference.huggingface.co/models/veryVANYA/ps1-style-flux"
prompt = f"ps1 game screenshot, {prompt}"
elif model == 'Softserve Anime':
API_URL = "https://api-inference.huggingface.co/models/alvdansen/softserve_anime"
prompt = f"sftsrv style illustration, {prompt}"
elif model == 'Flux Tarot v1':
API_URL = "https://api-inference.huggingface.co/models/multimodalart/flux-tarot-v1"
prompt = f"in the style of TOK a trtcrd tarot style, {prompt}"
elif model == 'Half Illustration':
API_URL = "https://api-inference.huggingface.co/models/davisbro/half_illustration"
prompt = f"in the style of TOK, {prompt}"
elif model == 'OpenDalle v1.1':
API_URL = "https://api-inference.huggingface.co/models/dataautogpt3/OpenDalleV1.1"
elif model == 'Flux Ghibsky Illustration':
API_URL = "https://api-inference.huggingface.co/models/aleksa-codes/flux-ghibsky-illustration"
prompt = f"GHIBSKY style, {prompt}"
elif model == 'Flux Koda':
API_URL = "https://api-inference.huggingface.co/models/alvdansen/flux-koda"
prompt = f"flmft style, {prompt}"
elif model == 'Soviet Diffusion XL':
API_URL = "https://api-inference.huggingface.co/models/openskyml/soviet-diffusion-xl"
prompt = f"soviet poster, {prompt}"
elif model == 'Flux Realism LoRA':
API_URL = "https://api-inference.huggingface.co/models/XLabs-AI/flux-RealismLora"
elif model == 'Frosting Lane Flux':
API_URL = "https://api-inference.huggingface.co/models/alvdansen/frosting_lane_flux"
prompt = f"frstingln illustration, {prompt}"
elif model == 'Phantasma Anime':
API_URL = "https://api-inference.huggingface.co/models/alvdansen/phantasma-anime"
elif model == 'Boreal':
API_URL = "https://api-inference.huggingface.co/models/kudzueye/Boreal"
prompt = f"photo, {prompt}"
elif model == 'How2Draw':
API_URL = "https://api-inference.huggingface.co/models/glif/how2draw"
prompt = f"How2Draw, {prompt}"
elif model == 'Flux AestheticAnime':
API_URL = "https://api-inference.huggingface.co/models/dataautogpt3/FLUX-AestheticAnime"
elif model == 'Fashion Hut Modeling LoRA':
API_URL = "https://api-inference.huggingface.co/models/prithivMLmods/Fashion-Hut-Modeling-LoRA"
prompt = f"Modeling of, {prompt}"
elif model == 'Flux SyntheticAnime':
API_URL = "https://api-inference.huggingface.co/models/dataautogpt3/FLUX-SyntheticAnime"
prompt = f"1980s anime screengrab, VHS quality, syntheticanime, {prompt}"
elif model == 'Flux Midjourney Anime':
API_URL = "https://api-inference.huggingface.co/models/brushpenbob/flux-midjourney-anime"
prompt = f"egmid, {prompt}"
elif model == 'Coloring Book Generator':
API_URL = "https://api-inference.huggingface.co/models/robert123231/coloringbookgenerator"
elif model == 'Collage Flux':
API_URL = "https://api-inference.huggingface.co/models/prithivMLmods/Castor-Collage-Dim-Flux-LoRA"
prompt = f"collage, {prompt}"
elif model == 'Flux Product Ad Backdrop':
API_URL = "https://api-inference.huggingface.co/models/prithivMLmods/Flux-Product-Ad-Backdrop"
prompt = f"Product Ad, {prompt}"
elif model == 'Product Design':
API_URL = "https://api-inference.huggingface.co/models/multimodalart/product-design"
prompt = f"product designed by prdsgn, {prompt}"
elif model == '90s Anime Art':
API_URL = "https://api-inference.huggingface.co/models/glif/90s-anime-art"
elif model == 'Brain Melt Acid Art':
API_URL = "https://api-inference.huggingface.co/models/glif/Brain-Melt-Acid-Art"
prompt = f"maximalism, in an acid surrealism style, {prompt}"
elif model == 'Lustly Flux Uncensored v1':
API_URL = "https://api-inference.huggingface.co/models/lustlyai/Flux_Lustly.ai_Uncensored_nsfw_v1"
elif model == 'NSFW Master Flux':
API_URL = "https://api-inference.huggingface.co/models/Keltezaa/NSFW_MASTER_FLUX"
prompt = f"NSFW, {prompt}"
elif model == 'Flux Outfit Generator':
API_URL = "https://api-inference.huggingface.co/models/tryonlabs/FLUX.1-dev-LoRA-Outfit-Generator"
elif model == 'Midjourney':
API_URL = "https://api-inference.huggingface.co/models/Jovie/Midjourney"
elif model == 'DreamPhotoGASM':
API_URL = "https://api-inference.huggingface.co/models/Yntec/DreamPhotoGASM"
elif model == 'Flux Super Realism LoRA':
API_URL = "https://api-inference.huggingface.co/models/strangerzonehf/Flux-Super-Realism-LoRA"
elif model == 'Stable Diffusion 2-1':
API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-2-1-base"
elif model == 'Stable Diffusion 3.5 Large':
API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-3.5-large"
elif model == 'Stable Diffusion 3.5 Large Turbo':
API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-3.5-large-turbo"
elif model == 'Stable Diffusion 3 Medium':
API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-3-medium-diffusers"
prompt = f"A, {prompt}"
elif model == 'Duchaiten Real3D NSFW XL':
API_URL = "https://api-inference.huggingface.co/models/stablediffusionapi/duchaiten-real3d-nsfw-xl"
elif model == 'Pixel Art XL':
API_URL = "https://api-inference.huggingface.co/models/nerijs/pixel-art-xl"
prompt = f"pixel art, {prompt}"
elif model == 'Character Design':
API_URL = "https://api-inference.huggingface.co/models/KappaNeuro/character-design"
prompt = f"Character Design, {prompt}"
elif model == 'Sketched Out Manga':
API_URL = "https://api-inference.huggingface.co/models/alvdansen/sketchedoutmanga"
prompt = f"daiton, {prompt}"
elif model == 'Archfey Anime':
API_URL = "https://api-inference.huggingface.co/models/alvdansen/archfey_anime"
elif model == 'Lofi Cuties':
API_URL = "https://api-inference.huggingface.co/models/alvdansen/lofi-cuties"
elif model == 'YiffyMix':
API_URL = "https://api-inference.huggingface.co/models/Yntec/YiffyMix"
elif model == 'Analog Madness Realistic v7':
API_URL = "https://api-inference.huggingface.co/models/digiplay/AnalogMadness-realistic-model-v7"
elif model == 'Selfie Photography':
API_URL = "https://api-inference.huggingface.co/models/artificialguybr/selfiephotographyredmond-selfie-photography-lora-for-sdxl"
prompt = f"instagram model, discord profile picture, {prompt}"
elif model == 'Filmgrain':
API_URL = "https://api-inference.huggingface.co/models/artificialguybr/filmgrain-redmond-filmgrain-lora-for-sdxl"
prompt = f"Film Grain, FilmGrainAF, {prompt}"
elif model == 'Leonardo AI Style Illustration':
API_URL = "https://api-inference.huggingface.co/models/goofyai/Leonardo_Ai_Style_Illustration"
prompt = f"leonardo style, illustration, vector art, {prompt}"
elif model == 'Cyborg Style XL':
API_URL = "https://api-inference.huggingface.co/models/goofyai/cyborg_style_xl"
prompt = f"cyborg style, {prompt}"
elif model == 'Little Tinies':
API_URL = "https://api-inference.huggingface.co/models/alvdansen/littletinies"
elif model == 'NSFW XL':
API_URL = "https://api-inference.huggingface.co/models/Dremmar/nsfw-xl"
elif model == 'Analog Redmond':
API_URL = "https://api-inference.huggingface.co/models/artificialguybr/analogredmond"
prompt = f"timeless style, {prompt}"
elif model == 'Pixel Art Redmond':
API_URL = "https://api-inference.huggingface.co/models/artificialguybr/PixelArtRedmond"
prompt = f"Pixel Art, {prompt}"
elif model == 'Ascii Art':
API_URL = "https://api-inference.huggingface.co/models/CiroN2022/ascii-art"
prompt = f"ascii art, {prompt}"
elif model == 'Analog':
API_URL = "https://api-inference.huggingface.co/models/Yntec/Analog"
elif model == 'Maple Syrup':
API_URL = "https://api-inference.huggingface.co/models/Yntec/MapleSyrup"
elif model == 'Perfect Lewd Fantasy':
API_URL = "https://api-inference.huggingface.co/models/digiplay/perfectLewdFantasy_v1.01"
elif model == 'AbsoluteReality 1.8.1':
API_URL = "https://api-inference.huggingface.co/models/digiplay/AbsoluteReality_v1.8.1"
elif model == 'Disney':
API_URL = "https://api-inference.huggingface.co/models/goofyai/disney_style_xl"
prompt = f"Disney style, {prompt}"
elif model == 'Redmond SDXL':
API_URL = "https://api-inference.huggingface.co/models/artificialguybr/LogoRedmond-LogoLoraForSDXL-V2"
elif model == 'epiCPhotoGasm':
API_URL = "https://api-inference.huggingface.co/models/Yntec/epiCPhotoGasm"
else:
API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-xl-base-1.0"
# Prepare payload in Hugging Face Inference API style
# (negative_prompt, steps, cfg_scale, seed, strength ๋ฑ์ parameters ์์ ๋ฐฐ์น)
payload = {
"inputs": prompt,
"parameters": {
"negative_prompt": negative_prompt,
"num_inference_steps": steps,
"guidance_scale": cfg_scale,
"width": width,
"height": height,
"strength": strength,
# seed๋ฅผ ์ง์ํ๋ ๋ชจ๋ธ/์๋ํฌ์ธํธ์ ๋ฐ๋ผ ๋ฌด์๋ ์๋ ์์
"seed": seed if seed != -1 else random.randint(1, 1000000000),
},
# ๋ชจ๋ธ์ด ๋ก๋ฉ ์ค์ผ ๊ฒฝ์ฐ ๊ธฐ๋ค๋ฆฌ๋๋ก ์ค์
"options": {"wait_for_model": True}
}
# Improved retry logic with exponential backoff
max_retries = 3
current_retry = 0
backoff_factor = 2 # Exponential backoff
while current_retry < max_retries:
try:
response = requests.post(API_URL, headers=headers, json=payload, timeout=180)
# ๋๋ฒ๊น
์ฉ ์ ๋ณด ์ถ๋ ฅ
print("Response Content-Type:", response.headers.get("Content-Type"))
print("Response Text (snippet):", response.text[:500])
response.raise_for_status() # HTTP ์๋ฌ ์ฝ๋ ์ ์์ธ ๋ฐ์
image = Image.open(io.BytesIO(response.content))
print(f'Generation {key} completed successfully')
return image
except (requests.exceptions.Timeout,
requests.exceptions.ConnectionError,
requests.exceptions.HTTPError,
requests.exceptions.RequestException) as e:
current_retry += 1
if current_retry < max_retries:
wait_time = backoff_factor ** current_retry # Exponential backoff
print(f"Network error occurred: {str(e)}. Retrying in {wait_time} seconds... (Attempt {current_retry + 1}/{max_retries})")
time.sleep(wait_time)
continue
else:
# Detailed error message based on exception type
if isinstance(e, requests.exceptions.Timeout):
error_msg = f"Request timed out after {max_retries} attempts. The model might be busy, please try again later."
elif isinstance(e, requests.exceptions.ConnectionError):
error_msg = f"Connection error after {max_retries} attempts. Please check your network connection."
elif isinstance(e, requests.exceptions.HTTPError):
status_code = e.response.status_code if hasattr(e, 'response') and e.response is not None else "unknown"
error_msg = f"HTTP error (status code: {status_code}) after {max_retries} attempts."
else:
error_msg = f"Request failed after {max_retries} attempts: {str(e)}"
raise gr.Error(error_msg)
except Exception as e:
error_message = f"Unexpected error: {str(e)}"
if isinstance(e, requests.exceptions.RequestException) and hasattr(e, 'response') and e.response is not None:
if e.response.status_code == 401:
error_message = "Invalid API token. Please check your Hugging Face API token."
elif e.response.status_code == 403:
error_message = "Access denied. Please check your API token permissions."
elif e.response.status_code == 503:
error_message = "Model is currently loading. Please try again in a few moments."
raise gr.Error(error_message)
def generate_grid(prompt, selected_models, custom_lora, negative_prompt, steps, cfg_scale, seed, strength, width, height, progress=gr.Progress()):
if len(selected_models) > 4:
raise gr.Error("Please select up to 4 models")
if len(selected_models) == 0:
raise gr.Error("Please select at least 1 model")
# Initialize image array
images = [None] * 4
total_models = len(selected_models[:4])
def update_gallery():
# Only include non-None images for gallery update
return [img for img in images if img is not None]
# Create placeholder for failed models
placeholder_image = None
# Generate image for each model
for idx, model_name in enumerate(selected_models[:4]):
try:
progress((idx + 1) / total_models, f"Generating image for {model_name}...")
img = query(prompt, model_name, custom_lora, negative_prompt, steps, cfg_scale, seed, strength, width, height)
images[idx] = img
# If this is the first successful generation, save as placeholder for failed models
if placeholder_image is None:
placeholder_image = img
# Update gallery after each successful generation
yield update_gallery()
except Exception as e:
print(f"Error generating image for {model_name}: {str(e)}")
# Keep the slot as None and continue with next model
continue
# Fill empty slots with a placeholder (either the last successful image or a blank image)
if placeholder_image:
for i in range(len(images)):
if images[i] is None:
# Create a copy of placeholder to avoid reference issues
images[i] = placeholder_image.copy()
else:
# If all models failed, create a blank image with error text
for i in range(len(images)):
blank_img = Image.new('RGB', (width, height), color=(240, 240, 240))
images[i] = blank_img
progress(1.0, "Generation complete!")
yield update_gallery()
def check_network_connectivity():
"""Utility function to check network connectivity to the Hugging Face API"""
try:
response = requests.get("https://api-inference.huggingface.co", timeout=5)
if response.status_code == 200:
return True
return False
except:
return False
css = """
footer {
visibility: hidden;
}
"""
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as dalle:
gr.Markdown("# ZeroWeight Studio")
with gr.Row():
with gr.Column(scale=2):
text_prompt = gr.Textbox(
label="Prompt",
placeholder="Describe what you want to create...",
lines=3
)
negative_prompt = gr.Textbox(
label="Negative Prompt",
placeholder="What should not be in the image",
value="(deformed, distorted, disfigured), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation",
lines=2
)
custom_lora = gr.Textbox(
label="Custom LoRA Path (Optional)",
placeholder="e.g., multimodalart/vintage-ads-flux",
lines=1
)
with gr.Column(scale=1):
with gr.Group():
gr.Markdown("### Image Settings")
width = gr.Slider(label="Width", value=1024, minimum=512, maximum=1216, step=64)
height = gr.Slider(label="Height", value=1024, minimum=512, maximum=1216, step=64)
with gr.Group():
gr.Markdown("### Generation Parameters")
steps = gr.Slider(label="Steps", value=35, minimum=1, maximum=100, step=1)
cfg = gr.Slider(label="CFG Scale", value=7, minimum=1, maximum=20, step=0.5)
strength = gr.Slider(label="Strength", value=0.7, minimum=0, maximum=1, step=0.1)
seed = gr.Slider(label="Seed (-1 for random)", value=-1, minimum=-1, maximum=1000000000, step=1)
with gr.Accordion("Model Selection", open=False):
model_search = gr.Textbox(
label="Search Models",
placeholder="Type to filter models...",
lines=1
)
# Set top 4 models as default
default_models = [
"FLUX.1 [Schnell]",
"Stable Diffusion 3.5 Large",
"Stable Diffusion 3.5 Large Turbo",
"Midjourney"
]
# Full model list
models_list = [
"FLUX.1 [Schnell]",
"Stable Diffusion 3.5 Large",
"Stable Diffusion 3.5 Large Turbo",
"Stable Diffusion XL",
"FLUX.1 [Dev]",
"Midjourney",
"DreamPhotoGASM",
"Disney",
"Leonardo AI Style Illustration",
"AbsoluteReality 1.8.1",
"Analog Redmond",
"Stable Diffusion 3 Medium",
"Flux Super Realism LoRA",
"Flux Realism LoRA",
"Selfie Photography",
"Character Design",
"Pixel Art XL",
"3D Sketchfab",
"Flux Animex V2",
"Flux Animeo V1",
"Flux AestheticAnime",
"90s Anime Art",
"Softserve Anime",
"Brain Melt Acid Art",
"Retro Comic Flux",
"Purple Dreamy",
"SoftPasty Flux",
"Flux Logo Design",
"Product Design",
"Propaganda Poster",
"Movie Board",
"Collage Flux"
]
model = gr.Checkboxgroup(
label="Select Models (Choose up to 4)",
choices=models_list,
value=default_models,
interactive=True
)
with gr.Row():
generate_btn = gr.Button("Generate 2x2 Grid", variant="primary", size="lg")
# Add network status indicator
network_status = gr.Markdown("", elem_id="network_status")
# Function to check and update network status
def update_network_status():
if check_network_connectivity():
return "โ
Connected to Hugging Face API"
else:
return "โ No connection to Hugging Face API. Please check your network."
with gr.Row():
gallery = gr.Gallery(
label="Generated Images",
show_label=True,
elem_id="gallery",
columns=2,
rows=2,
height="auto",
preview=True,
)
# Event handlers
generate_btn.click(
fn=generate_grid,
inputs=[
text_prompt,
model,
custom_lora,
negative_prompt,
steps,
cfg,
seed,
strength,
width,
height
],
outputs=gallery,
show_progress=True
)
def filter_models(search_term):
filtered_models = [m for m in models_list if search_term.lower() in m.lower()]
return gr.update(choices=filtered_models, value=[])
model_search.change(filter_models, inputs=model_search, outputs=model)
# Update network status when the app loads
dalle.load(fn=update_network_status, outputs=network_status)
if __name__ == "__main__":
dalle.launch(show_api=False, share=False)
|