import spaces import argparse import os import time from os import path from safetensors.torch import load_file from huggingface_hub import hf_hub_download cache_path = path.join(path.dirname(path.abspath(__file__)), "models") os.environ["TRANSFORMERS_CACHE"] = cache_path os.environ["HF_HUB_CACHE"] = cache_path os.environ["HF_HOME"] = cache_path import gradio as gr import torch from diffusers import FluxPipeline torch.backends.cuda.matmul.allow_tf32 = True class timer: def __init__(self, method_name="timed process"): self.method = method_name def __enter__(self): self.start = time.time() print(f"{self.method} starts") def __exit__(self, exc_type, exc_val, exc_tb): end = time.time() print(f"{self.method} took {str(round(end - self.start, 2))}s") if not path.exists(cache_path): os.makedirs(cache_path, exist_ok=True) pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16) pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors")) pipe.fuse_lora(lora_scale=0.125) pipe.to(device="cuda", dtype=torch.bfloat16) # Define example prompts example_prompts = [ "A cyberpunk cityscape at night with neon lights reflecting in puddles, towering skyscrapers and flying cars", "An ethereal fairy with translucent iridescent wings standing in an enchanted forest with glowing mushrooms and floating light particles", "A majestic dragon soaring through stormy clouds above jagged mountain peaks as lightning strikes in the background", "A futuristic space station orbiting a vibrant nebula with multiple colorful ringed planets visible through a massive observation window", "An underwater scene of an ancient lost city with ornate temples and statues covered in bioluminescent coral and swimming sea creatures" ] # Custom CSS for neon theme css = """ .neon-container { background: linear-gradient(to right, #000428, #004e92); border-radius: 16px; box-shadow: 0 0 15px #00f3ff, 0 0 25px #00f3ff; } .neon-title { text-shadow: 0 0 5px #fff, 0 0 10px #fff, 0 0 15px #0073e6, 0 0 20px #0073e6, 0 0 25px #0073e6; color: #ffffff; font-weight: bold !important; } .neon-text { color: #00ff9d; text-shadow: 0 0 5px #00ff9d; } .neon-button { box-shadow: 0 0 5px #ff00dd, 0 0 10px #ff00dd !important; background: linear-gradient(90deg, #ff00dd, #8b00ff) !important; border: none !important; color: white !important; font-weight: bold !important; } .neon-button:hover { box-shadow: 0 0 10px #ff00dd, 0 0 20px #ff00dd !important; } .neon-input { border: 1px solid #00f3ff !important; box-shadow: 0 0 5px #00f3ff !important; } .neon-slider > div { background: linear-gradient(90deg, #00ff9d, #00f3ff) !important; } .neon-slider > div > div { background: #ff00dd !important; box-shadow: 0 0 5px #ff00dd !important; } .neon-card { background-color: rgba(0, 0, 0, 0.7) !important; border: 1px solid #00f3ff !important; box-shadow: 0 0 10px #00f3ff !important; padding: 16px !important; border-radius: 8px !important; } .neon-example { background: rgba(0, 0, 0, 0.5) !important; border: 1px solid #00ff9d !important; border-radius: 8px !important; padding: 8px !important; color: #00ff9d !important; box-shadow: 0 0 5px #00ff9d !important; margin: 4px !important; cursor: pointer !important; } .neon-example:hover { box-shadow: 0 0 10px #00ff9d, 0 0 15px #00ff9d !important; background: rgba(0, 255, 157, 0.2) !important; } """ with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo: with gr.Blocks(elem_classes=["neon-container"]): gr.Markdown( """

FLUX: Fast & Furious

AutoML team from ByteDance

""" ) with gr.Row(): with gr.Column(scale=3, elem_classes=["neon-card"]): with gr.Group(): prompt = gr.Textbox( label="Your Image Description", placeholder="E.g., A serene landscape with mountains and a lake at sunset", lines=3, elem_classes=["neon-input"] ) # Examples section gr.Markdown('

Click on any example to use it:

') with gr.Row(): example_boxes = [gr.Button(ex[:40] + "...", elem_classes=["neon-example"]) for ex in example_prompts] # Connect example buttons to the prompt textbox for i, example_btn in enumerate(example_boxes): example_btn.click( fn=lambda x=example_prompts[i]: x, outputs=prompt ) with gr.Accordion("Advanced Settings", open=False): with gr.Group(): with gr.Row(): height = gr.Slider(label="Height", minimum=256, maximum=1152, step=64, value=1024, elem_classes=["neon-slider"]) width = gr.Slider(label="Width", minimum=256, maximum=1152, step=64, value=1024, elem_classes=["neon-slider"]) with gr.Row(): steps = gr.Slider(label="Inference Steps", minimum=6, maximum=25, step=1, value=8, elem_classes=["neon-slider"]) scales = gr.Slider(label="Guidance Scale", minimum=0.0, maximum=5.0, step=0.1, value=3.5, elem_classes=["neon-slider"]) seed = gr.Number(label="Seed (for reproducibility)", value=3413, precision=0, elem_classes=["neon-input"]) generate_btn = gr.Button("Generate Image", variant="primary", scale=1, elem_classes=["neon-button"]) with gr.Column(scale=4, elem_classes=["neon-card"]): output = gr.Image(label="Your Generated Image") gr.Markdown( """

How to Use

  1. Enter a detailed description of the image you want to create.
  2. Or click one of our exciting example prompts above!
  3. Adjust advanced settings if desired (tap to expand).
  4. Tap "Generate Image" and wait for your creation!

Tip: Be specific in your description for best results!

""" ) @spaces.GPU def process_image(height, width, steps, scales, prompt, seed): global pipe with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"): return pipe( prompt=[prompt], generator=torch.Generator().manual_seed(int(seed)), num_inference_steps=int(steps), guidance_scale=float(scales), height=int(height), width=int(width), max_sequence_length=256 ).images[0] generate_btn.click( process_image, inputs=[height, width, steps, scales, prompt, seed], outputs=output ) if __name__ == "__main__": demo.launch()