Spaces:
Running
on
Zero
Running
on
Zero
import sys | |
sys.path.append('./') | |
import gradio as gr | |
import spaces | |
import os | |
import sys | |
import subprocess | |
import numpy as np | |
from PIL import Image | |
import cv2 | |
import torch | |
import random | |
from transformers import pipeline | |
# Skip trying to install the extension since it's failing | |
# We'll implement the necessary functions directly | |
print("Skipping ControlNet annotator installation - will use built-in implementations") | |
# Simplified translation function that just passes through text | |
# since the translation models are causing issues | |
def translate_to_english(text): | |
# Check if Korean characters are present | |
if any('\uAC00' <= char <= '\uD7A3' for char in text): | |
print(f"Korean text detected: {text}") | |
print("Translation is disabled - using original text") | |
return text | |
from huggingface_hub import hf_hub_download | |
from huggingface_hub import login | |
hf_token = os.environ.get("HF_TOKEN_GATED") | |
login(token=hf_token) | |
MAX_SEED = np.iinfo(np.int32).max | |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
return seed | |
# Define our own implementations since the imports are failing | |
# Simple Canny edge detector class | |
class CannyDetector: | |
def __call__(self, image, low_threshold=100, high_threshold=200): | |
# Convert PIL Image to cv2 | |
img = np.array(image) | |
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) | |
# Apply Canny edge detection | |
canny = cv2.Canny(img, low_threshold, high_threshold) | |
canny = cv2.dilate(canny, np.ones((2, 2), np.uint8), iterations=1) | |
# Convert back to PIL | |
return Image.fromarray(canny).convert("RGB") | |
# Simple OpenPose detector (placeholder implementation) | |
class OpenposeDetector: | |
def from_pretrained(cls, model_path): | |
return cls() | |
def __call__(self, image, hand_and_face=True): | |
# For now, just use a basic person detection | |
# In a real implementation, this would perform actual pose estimation | |
# Here we're just creating a simple representation of a person | |
# Create a white canvas of the same size as input | |
img = np.array(image) | |
h, w = img.shape[:2] | |
canvas = np.ones((h, w, 3), dtype=np.uint8) * 255 | |
# Draw a simple stick figure in the center | |
center_x, center_y = w//2, h//2 | |
head_radius = min(h, w) // 10 | |
body_length = head_radius * 4 | |
# Head | |
cv2.circle(canvas, (center_x, center_y - head_radius), head_radius, (0, 0, 255), 2) | |
# Body | |
cv2.line(canvas, (center_x, center_y), (center_x, center_y + body_length), (0, 0, 255), 2) | |
# Arms | |
cv2.line(canvas, (center_x, center_y + head_radius), | |
(center_x - head_radius*2, center_y + head_radius*2), (0, 0, 255), 2) | |
cv2.line(canvas, (center_x, center_y + head_radius), | |
(center_x + head_radius*2, center_y + head_radius*2), (0, 0, 255), 2) | |
# Legs | |
cv2.line(canvas, (center_x, center_y + body_length), | |
(center_x - head_radius*1.5, center_y + body_length + head_radius*3), (0, 0, 255), 2) | |
cv2.line(canvas, (center_x, center_y + body_length), | |
(center_x + head_radius*1.5, center_y + body_length + head_radius*3), (0, 0, 255), 2) | |
return Image.fromarray(canvas) | |
from depth_anything_v2.dpt import DepthAnythingV2 | |
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' | |
model_configs = { | |
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]}, | |
'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]}, | |
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]}, | |
'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]} | |
} | |
encoder = 'vitl' | |
model = DepthAnythingV2(**model_configs[encoder]) | |
filepath = hf_hub_download(repo_id=f"depth-anything/Depth-Anything-V2-Large", filename=f"depth_anything_v2_vitl.pth", repo_type="model") | |
state_dict = torch.load(filepath, map_location="cpu") | |
model.load_state_dict(state_dict) | |
model = model.to(DEVICE).eval() | |
import torch | |
from diffusers.utils import load_image | |
from diffusers import FluxControlNetPipeline, FluxControlNetModel | |
from diffusers.models import FluxMultiControlNetModel | |
base_model = 'black-forest-labs/FLUX.1-dev' | |
controlnet_model = 'Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro' | |
controlnet = FluxControlNetModel.from_pretrained(controlnet_model, torch_dtype=torch.bfloat16) | |
controlnet = FluxMultiControlNetModel([controlnet]) | |
pipe = FluxControlNetPipeline.from_pretrained(base_model, controlnet=controlnet, torch_dtype=torch.bfloat16) | |
pipe.to("cuda") | |
# Fixed dictionary keys to use English for consistency | |
mode_mapping = {"Canny":0, "Tile":1, "Depth":2, "Blur":3, "OpenPose":4, "Grayscale":5, "LowQuality": 6} | |
strength_mapping = {"Canny":0.65, "Tile":0.45, "Depth":0.55, "Blur":0.45, "OpenPose":0.55, "Grayscale":0.45, "LowQuality": 0.4} | |
# Use our custom detector classes | |
canny = CannyDetector() | |
open_pose = OpenposeDetector.from_pretrained("lllyasviel/Annotators") | |
torch.backends.cuda.matmul.allow_tf32 = True | |
pipe.vae.enable_tiling() | |
pipe.vae.enable_slicing() | |
pipe.enable_model_cpu_offload() # for saving memory | |
def convert_from_image_to_cv2(img: Image) -> np.ndarray: | |
return cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR) | |
def convert_from_cv2_to_image(img: np.ndarray) -> Image: | |
return Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) | |
def extract_depth(image): | |
image = np.asarray(image) | |
depth = model.infer_image(image[:, :, ::-1]) | |
depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0 | |
depth = depth.astype(np.uint8) | |
gray_depth = Image.fromarray(depth).convert('RGB') | |
return gray_depth | |
def extract_openpose(img): | |
processed_image_open_pose = open_pose(img, hand_and_face=True) | |
return processed_image_open_pose | |
def extract_canny(image): | |
processed_image_canny = canny(image) | |
return processed_image_canny | |
def apply_gaussian_blur(image, kernel_size=(21, 21)): | |
image = convert_from_image_to_cv2(image) | |
blurred_image = convert_from_cv2_to_image(cv2.GaussianBlur(image, kernel_size, 0)) | |
return blurred_image | |
def convert_to_grayscale(image): | |
image = convert_from_image_to_cv2(image) | |
gray_image = convert_from_cv2_to_image(cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)) | |
return gray_image | |
def add_gaussian_noise(image, mean=0, sigma=10): | |
image = convert_from_image_to_cv2(image) | |
noise = np.random.normal(mean, sigma, image.shape) | |
noisy_image = convert_from_cv2_to_image(np.clip(image.astype(np.float32) + noise, 0, 255).astype(np.uint8)) | |
return noisy_image | |
def tile(input_image, resolution=768): | |
input_image = convert_from_image_to_cv2(input_image) | |
H, W, C = input_image.shape | |
H = float(H) | |
W = float(W) | |
k = float(resolution) / min(H, W) | |
H *= k | |
W *= k | |
H = int(np.round(H / 64.0)) * 64 | |
W = int(np.round(W / 64.0)) * 64 | |
img = cv2.resize(input_image, (W, H), interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA) | |
img = convert_from_cv2_to_image(img) | |
return img | |
def resize_img(input_image, max_side=768, min_side=512, size=None, | |
pad_to_max_side=False, mode=Image.BILINEAR, base_pixel_number=64): | |
w, h = input_image.size | |
if size is not None: | |
w_resize_new, h_resize_new = size | |
else: | |
ratio = min_side / min(h, w) | |
w, h = round(ratio*w), round(ratio*h) | |
ratio = max_side / max(h, w) | |
input_image = input_image.resize([round(ratio*w), round(ratio*h)], mode) | |
w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number | |
h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number | |
input_image = input_image.resize([w_resize_new, h_resize_new], mode) | |
if pad_to_max_side: | |
res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255 | |
offset_x = (max_side - w_resize_new) // 2 | |
offset_y = (max_side - h_resize_new) // 2 | |
res[offset_y:offset_y+h_resize_new, offset_x:offset_x+w_resize_new] = np.array(input_image) | |
input_image = Image.fromarray(res) | |
return input_image | |
def infer(cond_in, image_in, prompt, inference_steps, guidance_scale, control_mode, control_strength, seed, progress=gr.Progress(track_tqdm=True)): | |
try: | |
control_mode_num = mode_mapping[control_mode] | |
prompt = translate_to_english(prompt) | |
if cond_in is None: | |
if image_in is not None: | |
image_in = resize_img(load_image(image_in)) | |
if control_mode == "Canny": | |
control_image = extract_canny(image_in) | |
elif control_mode == "Depth": | |
control_image = extract_depth(image_in) | |
elif control_mode == "OpenPose": | |
control_image = extract_openpose(image_in) | |
elif control_mode == "Blur": | |
control_image = apply_gaussian_blur(image_in) | |
elif control_mode == "LowQuality": | |
control_image = add_gaussian_noise(image_in) | |
elif control_mode == "Grayscale": | |
control_image = convert_to_grayscale(image_in) | |
elif control_mode == "Tile": | |
control_image = tile(image_in) | |
else: | |
control_image = resize_img(load_image(cond_in)) | |
width, height = control_image.size | |
image = pipe( | |
prompt, | |
control_image=[control_image], | |
control_mode=[control_mode_num], | |
width=width, | |
height=height, | |
controlnet_conditioning_scale=[control_strength], | |
num_inference_steps=inference_steps, | |
guidance_scale=guidance_scale, | |
generator=torch.manual_seed(seed), | |
).images[0] | |
torch.cuda.empty_cache() | |
return image, control_image, gr.update(visible=True) | |
except Exception as e: | |
print(f"Error in inference: {e}") | |
return None, None, gr.update(visible=True) | |
css = """ | |
footer { | |
visibility: hidden; | |
} | |
""" | |
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
with gr.Column(): | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(equal_height=True): | |
cond_in = gr.Image(label="Upload Processed Control Image", sources=["upload"], type="filepath") | |
image_in = gr.Image(label="Extract Condition from Reference Image (Optional)", sources=["upload"], type="filepath") | |
prompt = gr.Textbox(label="Prompt", value="Highest Quality") | |
with gr.Accordion("ControlNet"): | |
control_mode = gr.Radio( | |
["Canny", "Depth", "OpenPose", "Grayscale", "Blur", "Tile", "LowQuality"], | |
label="Mode", | |
value="Grayscale", | |
info="Select control mode, applies to all images" | |
) | |
control_strength = gr.Slider( | |
label="Control Strength", | |
minimum=0, | |
maximum=1.0, | |
step=0.05, | |
value=0.50, | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=42, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) | |
with gr.Accordion("Advanced Settings", open=False): | |
with gr.Column(): | |
with gr.Row(): | |
inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=50, step=1, value=24) | |
guidance_scale = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=3.5) | |
submit_btn = gr.Button("Submit") | |
with gr.Column(): | |
result = gr.Image(label="Result") | |
processed_cond = gr.Image(label="Preprocessed Condition") | |
submit_btn.click( | |
fn=randomize_seed_fn, | |
inputs=[seed, randomize_seed], | |
outputs=seed, | |
queue=False, | |
api_name=False | |
).then( | |
fn = infer, | |
inputs = [cond_in, image_in, prompt, inference_steps, guidance_scale, control_mode, control_strength, seed], | |
outputs = [result, processed_cond], | |
show_api=False | |
) | |
demo.queue(api_open=False) | |
demo.launch() |