Spaces:
Running
Running
File size: 10,890 Bytes
3ec9224 5be8df6 8139c9f e8794d3 8139c9f 543a58e 8139c9f 5be8df6 8139c9f 5be8df6 8139c9f e8794d3 385cfb6 8139c9f 5be8df6 8139c9f 067316d 8139c9f 5be8df6 8139c9f 5be8df6 8139c9f 00bd139 5be8df6 8139c9f 5be8df6 8139c9f 5be8df6 8139c9f 5be8df6 9733941 8139c9f 04361a6 8139c9f 9733941 8bef1bd 9733941 8bef1bd 5be8df6 8139c9f 8bef1bd 5be8df6 3ca2785 00bd139 1ef8d7c 8139c9f 5be8df6 8139c9f 51d2a09 8139c9f 5be8df6 51d2a09 8139c9f 5be8df6 8139c9f 51d2a09 8139c9f 5be8df6 8139c9f 5be8df6 8139c9f 5be8df6 8139c9f 5be8df6 8139c9f 5be8df6 8139c9f 5be8df6 8139c9f 5be8df6 b1ec9ac 8139c9f e4c8a25 8139c9f e4c8a25 8139c9f e4c8a25 8139c9f 5be8df6 8139c9f 5be8df6 8139c9f 5be8df6 51d2a09 14155e5 8139c9f 9733941 8139c9f 9733941 8139c9f 8bef1bd 8139c9f 5be8df6 8139c9f 5be8df6 8139c9f 5be8df6 9733941 1ef8d7c 9733941 8139c9f 3b27ad5 9733941 8bef1bd 9733941 5be8df6 9733941 8139c9f 8bef1bd 9733941 8139c9f 8bef1bd 9733941 82a7c9d 8139c9f 8bef1bd 9733941 323ccbe 5be8df6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
import gradio as gr
import os
from googletrans import Translator
import requests
from dotenv import load_dotenv
import numpy as np
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import Chroma
from langchain_community.document_loaders import UnstructuredPDFLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.chains.qa_with_sources import RetrievalQAWithSourcesChain
from langchain.schema import Document
from langchain.memory import ConversationBufferMemory
from langchain.callbacks.manager import CallbackManager
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.llms.base import LLM
from typing import List, Dict, Any, Optional
from pydantic import BaseModel
from tqdm import tqdm
import torch
import logging
# Update the embedding function creation
embedding_function = HuggingFaceEmbeddings()
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class PDFDocument(Document):
def _extract_metadata(self, **kwargs) -> Dict[str, Any]:
metadata = super()._extract_metadata(**kwargs)
metadata["filename"] = self.page_content
return metadata
def initialize_database(document, chunk_size, chunk_overlap, progress=gr.Progress()):
logger.info("Initializing database...")
embedding_function = Chroma.from_pretrained("chroma-rt")
documents = []
for file in document:
loader = UnstructuredPDFLoader(file.name)
docs = loader.load()
splitter = CharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
for doc in docs:
pages = splitter.split_document(doc)
for page in pages:
documents.append(PDFDocument(page_content=page.page_content, metadata={"filename": file.name}))
vectorstore = Chroma.create_index(embedding_function, documents)
progress.update(0.5)
logger.info("Database initialized successfully.")
return vectorstore, "Initialized"
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress(), language="italian"):
logger.info("Initializing LLM chain...")
llm_name = list_llm[llm_option]
print("llm_name: ",llm_name)
if language == "italian":
default_llm = "google/gemma-7b-it"
else:
default_llm = "mistralai/Mistral-7B-Instruct-v0.2"
if llm_name != default_llm:
print(f"Using default LLM {default_llm} for {language}")
llm_name = default_llm
qa_chain = load_qa_with_sources_from_chain_type(
llm=llm_name,
chain_type="stuff",
retriever=vector_db.as_retriever(),
temperature=llm_temperature,
top_k_per_token=top_k,
max_tokens=max_tokens,
)
progress.update(1.0)
logger.info("LLM chain initialized successfully.")
return qa_chain, "Complete!"
def format_chat_history(message, history):
chat_history = ""
for item in history:
chat_history += f"\nUser: {item[0]}\nAI: {item[1]}"
chat_history += f"\n\nUser: {message}"
return chat_history
def translate_text(text, src_lang, dest_lang):
translator = Translator()
result = translator.translate(text, src=src_lang, dest=dest_lang)
return result.text
def conversation(qa_chain, message, history, language):
formatted_chat_history = format_chat_history(message, history)
response = qa_chain({"question": message, "chat_history": formatted_chat_history})
response_answer = response["answer"]
if response_answer.find("Helpful Answer:")!= -1:
response_answer = response_answer.split("Helpful Answer:")[-1]
if language != "italian":
try:
translated_response = translate_text(response_answer, src="en", dest="it")
except Exception as e:
logger.error(f"Error translating response: {e}")
translated_response = response_answer
else:
translated_response = response_answer
response_sources = response["source_documents"]
response_source1 = response_sources[0].page_content.strip()
response_source2 = response_sources[1].page_content.strip()
response_source3 = response_sources[2].page_content.strip()
response_source1_page = response_sources[0].metadata["page"] + 1
response_source2_page = response_sources[1].metadata["page"] + 1
response_source3_page = response_sources[2].metadata["page"] + 1
new_history = history + [(message, translated_response)]
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
def demo():
with gr.Blocks(theme="base") as demo:
vector_db = gr.State()
qa_chain = gr.State()
collection_name = gr.State()
language = gr.State(default_value="italian")
gr.Markdown(
"""<center><h2>Chatbot basato su PDF</center></h2>
<h3>Fai domande sui tuoi documenti PDF</h3>""")
gr.Markdown(
"""<b>Note:</b> Questo assistente AI, utilizzando Langchain e LLM open-source, esegue retrieval-augmented generation (RAG) dai tuoi documenti PDF. \
L'interfaccia utente mostra esplicitamente più passaggi per aiutare a comprendere il flusso di lavoro RAG.
Questo chatbot tiene conto delle domande precedenti quando genera risposte (tramite memoria conversazionale), e include riferimenti al documento per scopi di chiarezza.<br>
<br><b>Avviso:</b> Questo spazio utilizza l'hardware CPU Basic gratuito da Hugging Face. Alcuni passaggi e modelli LLM utilizzati qui sotto (endpoint di inferenza gratuiti) possono richiedere del tempo per generare una risposta.
""")
with gr.Tab("Step 1 - Carica PDF"):
with gr.Row():
document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Carica i tuoi documenti PDF (singolo o multiplo)")
with gr.Tab("Step 2 - Processa documento"):
with gr.Row():
db_btn = gr.Radio(["ChromaDB"], label="Tipo di database vettoriale", value = "ChromaDB", type="index", info="Scegli il tuo database vettoriale")
with gr.Accordion("Opzioni avanzate - Divisore testo documento", open=False):
with gr.Row():
slider_chunk_size = gr.Slider(minimum = 100, maximum = 1000, value=600, step=20, label="Dimensione chunk", info="Dimensione chunk", interactive=True)
with gr.Row():
slider_chunk_overlap = gr.Slider(minimum = 10, maximum = 200, value=40, step=10, label=" Sovrapposizione chunk", info="Sovrapposizione chunk", interactive=True)
with gr.Row():
db_progress = gr.Textbox(label="Inizializzazione database vettoriale", value="Nessuno")
with gr.Row():
db_btn = gr.Button("Genera database vettoriale")
with gr.Tab("Step 3 - Inizializza catena QA"):
with gr.Row():
llm_btn = gr.Radio(list_llm_simple, \
label="Modelli LLM", value = list_llm_simple[0], type="index", info="Scegli il tuo modello LLM")
with gr.Accordion("Opzioni avanzate - Modello LLM", open=False):
with gr.Row():
slider_temperature = gr.Slider(minimum = 0.01, maximum = 1.0, value=0.7, step=0.1, label="Temperatura", info="Temperatura del modello", interactive=True)
with gr.Row():
slider_maxtokens = gr.Slider(minimum = 224, maximum = 4096, value=1024, step=32, label="Token massimi", info="Token massimi del modello", interactive=True)
with gr.Row():
slider_topk = gr.Slider(minimum = 1, maximum = 10, value=3, step=1, label="Campioni top-k", info="Campioni top-k del modello", interactive=True)
with gr.Row():
llm_progress = gr.Textbox(value="Nessuno",label="Inizializzazione catena QA")
with gr.Row():
qachain_btn = gr.Button("Inizializza catena Question Answering")
with gr.Tab("Step 4 - Chatbot"):
chatbot = gr.Chatbot(height=300)
with gr.Accordion("Avanzate - Riferimenti documento", open=False):
with gr.Row():
doc_source1 = gr.Textbox(label="Riferimento 1", lines=2, container=True, scale=20)
source1_page = gr.Number(label="Pagina", scale=1)
with gr.Row():
doc_source2 = gr.Textbox(label="Riferimento 2", lines=2, container=True, scale=20)
source2_page = gr.Number(label="Pagina", scale=1)
with gr.Row():
doc_source3 = gr.Textbox(label="Riferimento 3", lines=2, container=True, scale=20)
source3_page = gr.Number(label="Pagina", scale=1)
with gr.Row():
msg = gr.Textbox(placeholder="Digita un messaggio (es. 'Di cosa parla questo documento?')", container=True)
with gr.Row():
submit_btn = gr.Button("Invia messaggio")
clear_btn = gr.ClearButton([msg, chatbot], value="Pulisci conversazione")
with gr.Row():
language_selector = gr.Radio(choices=["italiano", "inglese"], value="italiano", label="Lingua")
# Preprocessing events
db_btn.click(initialize_database, \
inputs=[document, slider_chunk_size, slider_chunk_overlap], \
outputs=[vector_db, collection_name, db_progress])
qachain_btn.click(initialize_LLM, \
inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db, language], \
outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0,"",0], \
inputs=None, \
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
queue=False)
# Chatbot events
msg.submit(conversation, \
inputs=[qa_chain, msg, chatbot, language], \
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
queue=False)
submit_btn.click(conversation, \
inputs=[qa_chain, msg, chatbot, language], \
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
queue=False)
clear_btn.click(lambda:[None,"",0,"",0,"",0], \
inputs=None, \
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
queue=False)
demo.queue().launch(debug=True)
if __name__ == "__main__":
demo()
|