pdf-rag-chatbot / app.py
farmax's picture
Update app.py
93068c0 verified
raw
history blame
7.17 kB
import gradio as gr
import os
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.llms import HuggingFaceEndpoint
from langchain.memory import ConversationBufferMemory
from pathlib import Path
import chromadb
from unidecode import unidecode
import re
list_llm = [
"mistralai/Mistral-7B-Instruct-v0.2", "mistralai/Mixtral-8x7B-Instruct-v0.1",
"google/gemma-7b-it", "google/gemma-2b-it",
"HuggingFaceH4/zephyr-7b-beta", "HuggingFaceH4/zephyr-7b-gemma-v0.1",
"TinyLlama/TinyLlama-1.1B-Chat-v1.0", "tiiuae/falcon-7b-instruct"
]
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
def load_doc(list_file_path, chunk_size, chunk_overlap):
loaders = [PyPDFLoader(x) for x in list_file_path]
pages = []
for loader in loaders:
pages.extend(loader.load())
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
return text_splitter.split_documents(pages)
def create_db(splits, collection_name):
embedding = HuggingFaceEmbeddings()
new_client = chromadb.EphemeralClient()
return Chroma.from_documents(documents=splits, embedding=embedding, client=new_client, collection_name=collection_name)
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
progress(0.5, desc="Initializing HF Hub...")
llm = HuggingFaceEndpoint(
repo_id=llm_model,
temperature=temperature,
max_new_tokens=max_tokens,
top_k=top_k,
)
memory = ConversationBufferMemory(memory_key="chat_history", output_key='answer', return_messages=True)
retriever = vector_db.as_retriever()
return ConversationalRetrievalChain.from_llm(
llm,
retriever=retriever,
chain_type="stuff",
memory=memory,
return_source_documents=True,
verbose=False,
)
def create_collection_name(filepath):
collection_name = Path(filepath).stem
collection_name = unidecode(collection_name.replace(" ", "-"))
collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name)[:50]
if len(collection_name) < 3:
collection_name += 'xyz'
if not collection_name[0].isalnum():
collection_name = 'A' + collection_name[1:]
if not collection_name[-1].isalnum():
collection_name = collection_name[:-1] + 'Z'
return collection_name
def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()):
list_file_path = [x.name for x in list_file_obj if x is not None]
collection_name = create_collection_name(list_file_path[0])
doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
vector_db = create_db(doc_splits, collection_name)
return vector_db, collection_name, "Completed!"
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
llm_name = list_llm[llm_option]
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
return qa_chain, "Completed!"
def format_chat_history(message, chat_history):
return [f"User: {user_message}\nAssistant: {bot_message}" for user_message, bot_message in chat_history]
def conversation(qa_chain, message, history):
formatted_chat_history = format_chat_history(message, history)
response = qa_chain({"question": message, "chat_history": formatted_chat_history})
response_answer = response["answer"].split("Helpful Answer:")[-1]
response_sources = response["source_documents"]
sources = [(source.page_content.strip(), source.metadata["page"] + 1) for source in response_sources[:3]]
new_history = history + [(message, response_answer)]
return qa_chain, gr.update(value=""), new_history, *[item for source in sources for item in source]
def demo():
with gr.Blocks(theme="base") as demo:
vector_db = gr.State()
qa_chain = gr.State()
collection_name = gr.State()
gr.Markdown("# PDF-based Chatbot Creator")
with gr.Tab("Step 1 - Upload PDFs"):
document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload your PDF documents")
with gr.Tab("Step 2 - Process Documents"):
db_btn = gr.Radio(["ChromaDB"], label="Vector database type", value="ChromaDB", type="index")
with gr.Accordion("Advanced Options - Document text splitter", open=False):
slider_chunk_size = gr.Slider(100, 1000, 1000, step=20, label="Chunk size")
slider_chunk_overlap = gr.Slider(10, 200, 100, step=10, label="Chunk overlap")
db_progress = gr.Textbox(label="Vector database initialization", value="None")
db_btn = gr.Button("Generate vector database")
with gr.Tab("Step 3 - Initialize QA chain"):
llm_btn = gr.Radio(list_llm_simple, label="LLM models", value=list_llm_simple[5], type="index")
with gr.Accordion("Advanced options - LLM model", open=False):
slider_temperature = gr.Slider(0.01, 1.0, 0.3, step=0.1, label="Temperature")
slider_maxtokens = gr.Slider(224, 4096, 1024, step=32, label="Max Tokens")
slider_topk = gr.Slider(1, 10, 3, step=1, label="top-k samples")
language_btn = gr.Radio(["Italian", "English"], label="Language", value="Italian", type="index")
llm_progress = gr.Textbox(value="None", label="QA chain initialization")
qachain_btn = gr.Button("Initialize Question Answering chain")
with gr.Tab("Step 4 - Chatbot"):
chatbot = gr.Chatbot(height=300)
with gr.Accordion("Advanced options - Document references", open=False):
doc_sources = [gr.Textbox(label=f"Reference {i+1}", lines=2, container=True, scale=20) for i in range(3)]
source_pages = [gr.Number(label="Page", scale=1) for _ in range(3)]
msg = gr.Textbox(placeholder="Enter message (e.g., 'What is this document about?')", container=True)
submit_btn = gr.Button("Send message")
clear_btn = gr.ClearButton([msg, chatbot], value="Clear conversation")
db_btn.click(initialize_database, inputs=[document, slider_chunk_size, slider_chunk_overlap], outputs=[vector_db, collection_name, db_progress])
qachain_btn.click(initialize_LLM, inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], outputs=[qa_chain, llm_progress])
submit_btn.click(conversation, inputs=[qa_chain, msg, chatbot], outputs=[qa_chain, msg, chatbot] + doc_sources + source_pages)
msg.submit(conversation, inputs=[qa_chain, msg, chatbot], outputs=[qa_chain, msg, chatbot] + doc_sources + source_pages)
demo.queue().launch(debug=True)
if __name__ == "__main__":
demo()