Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -6,7 +6,7 @@ import requests
|
|
6 |
from dotenv import load_dotenv
|
7 |
import numpy as np
|
8 |
from langchain_community.vectorstores import Chroma
|
9 |
-
from langchain_community.document_loaders import UnstructuredPDFLoader
|
10 |
from langchain.text_splitter import CharacterTextSplitter
|
11 |
from langchain.chains import RetrievalQAWithSourcesChain
|
12 |
from langchain.schema import Document
|
@@ -20,6 +20,10 @@ from tqdm import tqdm
|
|
20 |
import torch
|
21 |
import logging
|
22 |
|
|
|
|
|
|
|
|
|
23 |
# Aggiornamento dell'inizializzazione di HuggingFaceEmbeddings
|
24 |
embedding_function = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
25 |
|
@@ -27,26 +31,30 @@ embedding_function = HuggingFaceEmbeddings(model_name="sentence-transformers/all
|
|
27 |
list_llm_simple = ["Gemma 7B (Italian)", "Mistral 7B"]
|
28 |
list_llm = ["google/gemma-7b-it", "mistralai/Mistral-7B-Instruct-v0.2"]
|
29 |
|
30 |
-
logging.basicConfig(level=logging.INFO)
|
31 |
-
logger = logging.getLogger(__name__)
|
32 |
-
|
33 |
-
class PDFDocument(Document):
|
34 |
-
def _extract_metadata(self, **kwargs) -> Dict[str, Any]:
|
35 |
-
metadata = super()._extract_metadata(**kwargs)
|
36 |
-
metadata["filename"] = self.page_content
|
37 |
-
return metadata
|
38 |
-
|
39 |
def initialize_database(document, chunk_size, chunk_overlap, progress=gr.Progress()):
|
40 |
logger.info("Initializing database...")
|
41 |
documents = []
|
42 |
for file in document:
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
splitter = CharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
|
46 |
for doc in docs:
|
47 |
pages = splitter.split_document(doc)
|
48 |
for page in pages:
|
49 |
-
documents.append(
|
|
|
|
|
|
|
50 |
|
51 |
vectorstore = Chroma.from_documents(documents, embedding_function)
|
52 |
progress.update(0.5)
|
@@ -121,6 +129,17 @@ def conversation(qa_chain, message, history, language):
|
|
121 |
|
122 |
def demo():
|
123 |
with gr.Blocks(theme="base") as demo:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
vector_db = gr.State()
|
125 |
qa_chain = gr.State()
|
126 |
collection_name = gr.State()
|
|
|
6 |
from dotenv import load_dotenv
|
7 |
import numpy as np
|
8 |
from langchain_community.vectorstores import Chroma
|
9 |
+
from langchain_community.document_loaders import UnstructuredPDFLoader, PyPDFLoader
|
10 |
from langchain.text_splitter import CharacterTextSplitter
|
11 |
from langchain.chains import RetrievalQAWithSourcesChain
|
12 |
from langchain.schema import Document
|
|
|
20 |
import torch
|
21 |
import logging
|
22 |
|
23 |
+
# Configurazione del logging
|
24 |
+
logging.basicConfig(level=logging.INFO)
|
25 |
+
logger = logging.getLogger(__name__)
|
26 |
+
|
27 |
# Aggiornamento dell'inizializzazione di HuggingFaceEmbeddings
|
28 |
embedding_function = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
29 |
|
|
|
31 |
list_llm_simple = ["Gemma 7B (Italian)", "Mistral 7B"]
|
32 |
list_llm = ["google/gemma-7b-it", "mistralai/Mistral-7B-Instruct-v0.2"]
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
def initialize_database(document, chunk_size, chunk_overlap, progress=gr.Progress()):
|
35 |
logger.info("Initializing database...")
|
36 |
documents = []
|
37 |
for file in document:
|
38 |
+
try:
|
39 |
+
loader = UnstructuredPDFLoader(file.name)
|
40 |
+
docs = loader.load()
|
41 |
+
except ImportError:
|
42 |
+
logger.warning("UnstructuredPDFLoader non disponibile. Tentativo di utilizzo di PyPDFLoader.")
|
43 |
+
try:
|
44 |
+
loader = PyPDFLoader(file.name)
|
45 |
+
docs = loader.load()
|
46 |
+
except ImportError:
|
47 |
+
logger.error("Impossibile caricare il documento PDF. Assicurati di aver installato 'unstructured' o 'pypdf'.")
|
48 |
+
return None, "Errore: Pacchetti necessari non installati. Esegui 'pip install unstructured pypdf' e riprova."
|
49 |
+
|
50 |
splitter = CharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
|
51 |
for doc in docs:
|
52 |
pages = splitter.split_document(doc)
|
53 |
for page in pages:
|
54 |
+
documents.append(Document(page_content=page.page_content, metadata={"filename": file.name}))
|
55 |
+
|
56 |
+
if not documents:
|
57 |
+
return None, "Errore: Nessun documento caricato correttamente."
|
58 |
|
59 |
vectorstore = Chroma.from_documents(documents, embedding_function)
|
60 |
progress.update(0.5)
|
|
|
129 |
|
130 |
def demo():
|
131 |
with gr.Blocks(theme="base") as demo:
|
132 |
+
gr.Markdown(
|
133 |
+
"""
|
134 |
+
## Importante: Installazione dei pacchetti necessari
|
135 |
+
Prima di utilizzare questa applicazione, assicurati di aver installato i seguenti pacchetti:
|
136 |
+
```
|
137 |
+
pip install unstructured pypdf
|
138 |
+
```
|
139 |
+
Questi pacchetti sono necessari per il corretto funzionamento del caricamento dei documenti PDF.
|
140 |
+
"""
|
141 |
+
)
|
142 |
+
|
143 |
vector_db = gr.State()
|
144 |
qa_chain = gr.State()
|
145 |
collection_name = gr.State()
|