Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -236,8 +236,7 @@ def demo():
|
|
236 |
doc_source2, source2_page,
|
237 |
doc_source3, source3_page,
|
238 |
doc_source4, source4_page,
|
239 |
-
doc_source5, source5_page],
|
240 |
-
queue=False)
|
241 |
submit_btn.click(conversation,
|
242 |
inputs=[qa_chain, msg, chatbot],
|
243 |
outputs=[qa_chain, msg, chatbot,
|
@@ -245,8 +244,7 @@ def demo():
|
|
245 |
doc_source2, source2_page,
|
246 |
doc_source3, source3_page,
|
247 |
doc_source4, source4_page,
|
248 |
-
doc_source5, source5_page],
|
249 |
-
queue=False)
|
250 |
clear_btn.click(lambda:[None,"",0,"",0,"",0], \
|
251 |
inputs=None, \
|
252 |
outputs=[chatbot, \
|
@@ -260,391 +258,4 @@ def demo():
|
|
260 |
|
261 |
|
262 |
if __name__ == "__main__":
|
263 |
-
demo()
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
#####################################################
|
270 |
-
import gradio as gr
|
271 |
-
import os
|
272 |
-
|
273 |
-
from langchain_community.document_loaders import PyPDFLoader
|
274 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
275 |
-
from langchain_community.vectorstores import Chroma
|
276 |
-
from langchain.chains import ConversationalRetrievalChain
|
277 |
-
from langchain_community.embeddings import HuggingFaceEmbeddings
|
278 |
-
from langchain_community.llms import HuggingFacePipeline
|
279 |
-
from langchain.chains import ConversationChain
|
280 |
-
from langchain.memory import ConversationBufferMemory
|
281 |
-
from langchain_community.llms import HuggingFaceEndpoint
|
282 |
-
|
283 |
-
from pathlib import Path
|
284 |
-
import chromadb
|
285 |
-
from unidecode import unidecode
|
286 |
-
|
287 |
-
from transformers import AutoTokenizer
|
288 |
-
import transformers
|
289 |
-
import torch
|
290 |
-
import tqdm
|
291 |
-
import accelerate
|
292 |
-
import re
|
293 |
-
# from chromadb.utils import get_default_config
|
294 |
-
vector_db = ''
|
295 |
-
|
296 |
-
# default_persist_directory = './chroma_HF/'
|
297 |
-
list_llm = ["mistralai/Mistral-7B-Instruct-v0.2", "mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mistral-7B-Instruct-v0.1", \
|
298 |
-
"google/gemma-7b-it","google/gemma-2b-it", \
|
299 |
-
"HuggingFaceH4/zephyr-7b-beta", "HuggingFaceH4/zephyr-7b-gemma-v0.1", \
|
300 |
-
"meta-llama/Llama-2-7b-chat-hf", "microsoft/phi-2", \
|
301 |
-
"TinyLlama/TinyLlama-1.1B-Chat-v1.0", "mosaicml/mpt-7b-instruct", "tiiuae/falcon-7b-instruct", \
|
302 |
-
"google/flan-t5-xxl"
|
303 |
-
]
|
304 |
-
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
|
305 |
-
|
306 |
-
# Load PDF document and create doc splits
|
307 |
-
def load_doc(list_file_path, chunk_size, chunk_overlap):
|
308 |
-
# Processing for one document only
|
309 |
-
# loader = PyPDFLoader(file_path)
|
310 |
-
# pages = loader.load()
|
311 |
-
loaders = [PyPDFLoader(x) for x in list_file_path]
|
312 |
-
pages = []
|
313 |
-
for loader in loaders:
|
314 |
-
pages.extend(loader.load())
|
315 |
-
# text_splitter = RecursiveCharacterTextSplitter(chunk_size = 600, chunk_overlap = 50)
|
316 |
-
text_splitter = RecursiveCharacterTextSplitter(
|
317 |
-
chunk_size = chunk_size,
|
318 |
-
chunk_overlap = chunk_overlap)
|
319 |
-
doc_splits = text_splitter.split_documents(pages)
|
320 |
-
return doc_splits
|
321 |
-
|
322 |
-
|
323 |
-
# Create vector database
|
324 |
-
def create_db(splits, collection_name):
|
325 |
-
embedding = HuggingFaceEmbeddings()
|
326 |
-
new_client = chromadb.EphemeralClient()
|
327 |
-
vectordb = Chroma.from_documents(
|
328 |
-
documents=splits,
|
329 |
-
embedding=embedding,
|
330 |
-
client=new_client,
|
331 |
-
collection_name=collection_name,
|
332 |
-
# persist_directory=default_persist_directory
|
333 |
-
)
|
334 |
-
return vectordb
|
335 |
-
|
336 |
-
|
337 |
-
# Load vector database
|
338 |
-
def load_db():
|
339 |
-
embedding = HuggingFaceEmbeddings()
|
340 |
-
vectordb = Chroma(
|
341 |
-
# persist_directory=default_persist_directory,
|
342 |
-
embedding_function=embedding)
|
343 |
-
return vectordb
|
344 |
-
|
345 |
-
# Initialize langchain LLM chain
|
346 |
-
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
347 |
-
progress(0.1, desc="Initializing HF tokenizer...")
|
348 |
-
# HuggingFacePipeline uses local model
|
349 |
-
# Note: it will download model locally...
|
350 |
-
# tokenizer=AutoTokenizer.from_pretrained(llm_model)
|
351 |
-
# progress(0.5, desc="Initializing HF pipeline...")
|
352 |
-
# pipeline=transformers.pipeline(
|
353 |
-
# "text-generation",
|
354 |
-
# model=llm_model,
|
355 |
-
# tokenizer=tokenizer,
|
356 |
-
# torch_dtype=torch.bfloat16,
|
357 |
-
# trust_remote_code=True,
|
358 |
-
# device_map="auto",
|
359 |
-
# # max_length=1024,
|
360 |
-
# max_new_tokens=max_tokens,
|
361 |
-
# do_sample=True,
|
362 |
-
# top_k=top_k,
|
363 |
-
# num_return_sequences=1,
|
364 |
-
# eos_token_id=tokenizer.eos_token_id
|
365 |
-
# )
|
366 |
-
# llm = HuggingFacePipeline(pipeline=pipeline, model_kwargs={'temperature': temperature})
|
367 |
-
|
368 |
-
# HuggingFaceHub uses HF inference endpoints
|
369 |
-
progress(0.5, desc="Initializing HF Hub...")
|
370 |
-
# Use of trust_remote_code as model_kwargs
|
371 |
-
# Warning: langchain issue
|
372 |
-
# URL: https://github.com/langchain-ai/langchain/issues/6080
|
373 |
-
if llm_model == "mistralai/Mixtral-8x7B-Instruct-v0.1":
|
374 |
-
llm = HuggingFaceEndpoint(
|
375 |
-
repo_id=llm_model,
|
376 |
-
# model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "load_in_8bit": True}
|
377 |
-
temperature = temperature,
|
378 |
-
max_new_tokens = max_tokens,
|
379 |
-
top_k = top_k,
|
380 |
-
load_in_8bit = True,
|
381 |
-
)
|
382 |
-
elif llm_model in ["HuggingFaceH4/zephyr-7b-gemma-v0.1","mosaicml/mpt-7b-instruct"]:
|
383 |
-
raise gr.Error("LLM model is too large to be loaded automatically on free inference endpoint")
|
384 |
-
llm = HuggingFaceEndpoint(
|
385 |
-
repo_id=llm_model,
|
386 |
-
temperature = temperature,
|
387 |
-
max_new_tokens = max_tokens,
|
388 |
-
top_k = top_k,
|
389 |
-
)
|
390 |
-
elif llm_model == "microsoft/phi-2":
|
391 |
-
# raise gr.Error("phi-2 model requires 'trust_remote_code=True', currently not supported by langchain HuggingFaceHub...")
|
392 |
-
llm = HuggingFaceEndpoint(
|
393 |
-
repo_id=llm_model,
|
394 |
-
# model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "trust_remote_code": True, "torch_dtype": "auto"}
|
395 |
-
temperature = temperature,
|
396 |
-
max_new_tokens = max_tokens,
|
397 |
-
top_k = top_k,
|
398 |
-
trust_remote_code = True,
|
399 |
-
torch_dtype = "auto",
|
400 |
-
)
|
401 |
-
elif llm_model == "TinyLlama/TinyLlama-1.1B-Chat-v1.0":
|
402 |
-
llm = HuggingFaceEndpoint(
|
403 |
-
repo_id=llm_model,
|
404 |
-
# model_kwargs={"temperature": temperature, "max_new_tokens": 250, "top_k": top_k}
|
405 |
-
temperature = temperature,
|
406 |
-
max_new_tokens = 250,
|
407 |
-
top_k = top_k,
|
408 |
-
)
|
409 |
-
elif llm_model == "meta-llama/Llama-2-7b-chat-hf":
|
410 |
-
raise gr.Error("Llama-2-7b-chat-hf model requires a Pro subscription...")
|
411 |
-
llm = HuggingFaceEndpoint(
|
412 |
-
repo_id=llm_model,
|
413 |
-
# model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k}
|
414 |
-
temperature = temperature,
|
415 |
-
max_new_tokens = max_tokens,
|
416 |
-
top_k = top_k,
|
417 |
-
)
|
418 |
-
else:
|
419 |
-
llm = HuggingFaceEndpoint(
|
420 |
-
repo_id=llm_model,
|
421 |
-
# model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "trust_remote_code": True, "torch_dtype": "auto"}
|
422 |
-
# model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k}
|
423 |
-
temperature = temperature,
|
424 |
-
max_new_tokens = max_tokens,
|
425 |
-
top_k = top_k,
|
426 |
-
)
|
427 |
-
|
428 |
-
progress(0.75, desc="Defining buffer memory...")
|
429 |
-
memory = ConversationBufferMemory(
|
430 |
-
memory_key="chat_history",
|
431 |
-
output_key='answer',
|
432 |
-
return_messages=True
|
433 |
-
)
|
434 |
-
# retriever=vector_db.as_retriever(search_type="similarity", search_kwargs={'k': 3})
|
435 |
-
retriever=vector_db.as_retriever()
|
436 |
-
progress(0.8, desc="Defining retrieval chain...")
|
437 |
-
qa_chain = ConversationalRetrievalChain.from_llm(
|
438 |
-
llm,
|
439 |
-
retriever=retriever,
|
440 |
-
chain_type="stuff",
|
441 |
-
memory=memory,
|
442 |
-
# combine_docs_chain_kwargs={"prompt": your_prompt})
|
443 |
-
return_source_documents=True,
|
444 |
-
#return_generated_question=False,
|
445 |
-
verbose=False,
|
446 |
-
)
|
447 |
-
progress(0.9, desc="Done!")
|
448 |
-
return qa_chain
|
449 |
-
|
450 |
-
|
451 |
-
# Generate collection name for vector database
|
452 |
-
# - Use filepath as input, ensuring unicode text
|
453 |
-
def create_collection_name(filepath):
|
454 |
-
# Extract filename without extension
|
455 |
-
collection_name = Path(filepath).stem
|
456 |
-
# Fix potential issues from naming convention
|
457 |
-
## Remove space
|
458 |
-
collection_name = collection_name.replace(" ","-")
|
459 |
-
## ASCII transliterations of Unicode text
|
460 |
-
collection_name = unidecode(collection_name)
|
461 |
-
## Remove special characters
|
462 |
-
#collection_name = re.findall("[\dA-Za-z]*", collection_name)[0]
|
463 |
-
collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name)
|
464 |
-
## Limit length to 50 characters
|
465 |
-
collection_name = collection_name[:50]
|
466 |
-
## Minimum length of 3 characters
|
467 |
-
if len(collection_name) < 3:
|
468 |
-
collection_name = collection_name + 'xyz'
|
469 |
-
## Enforce start and end as alphanumeric character
|
470 |
-
if not collection_name[0].isalnum():
|
471 |
-
collection_name = 'A' + collection_name[1:]
|
472 |
-
if not collection_name[-1].isalnum():
|
473 |
-
collection_name = collection_name[:-1] + 'Z'
|
474 |
-
print('Filepath: ', filepath)
|
475 |
-
print('Collection name: ', collection_name)
|
476 |
-
return collection_name
|
477 |
-
|
478 |
-
# Initialize database
|
479 |
-
def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()):
|
480 |
-
# Create list of documents (when valid)
|
481 |
-
list_file_path = [x.name for x in list_file_obj if x is not None]
|
482 |
-
print(list_file_path)
|
483 |
-
# Create collection_name for vector database
|
484 |
-
progress(0.1, desc="Creazione collezione...")
|
485 |
-
collection_name = create_collection_name(list_file_path[0])
|
486 |
-
progress(0.25, desc="Caricamento documenti..")
|
487 |
-
# Load document and create splits
|
488 |
-
doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
|
489 |
-
|
490 |
-
# Creare o caricare il nuovo database
|
491 |
-
progress(0.5, desc="Generazione vector database...")
|
492 |
-
vector_db = create_db(doc_splits, collection_name)
|
493 |
-
progress(0.9, desc="Fatto!")
|
494 |
-
|
495 |
-
return vector_db, collection_name, "Completato!"
|
496 |
-
|
497 |
-
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
498 |
-
# print("llm_option",llm_option)
|
499 |
-
llm_name = list_llm[llm_option]
|
500 |
-
print(f"Nome del modello: {llm_name}")
|
501 |
-
|
502 |
-
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
|
503 |
-
|
504 |
-
return qa_chain, "Completato!"
|
505 |
-
|
506 |
-
def format_chat_history(message, chat_history):
|
507 |
-
formatted_chat_history = []
|
508 |
-
for user_message, bot_message in chat_history:
|
509 |
-
formatted_chat_history.append(f"User: {user_message}")
|
510 |
-
formatted_chat_history.append(f"Assistant: {bot_message}")
|
511 |
-
return formatted_chat_history
|
512 |
-
|
513 |
-
|
514 |
-
def conversation(qa_chain, message, history):
|
515 |
-
formatted_chat_history = format_chat_history(message, history)
|
516 |
-
print("formatted_chat_history",formatted_chat_history)
|
517 |
-
|
518 |
-
# Generate response using QA chain
|
519 |
-
response = qa_chain({"question": message, "chat_history": formatted_chat_history})
|
520 |
-
response_answer = response["answer"]
|
521 |
-
if response_answer.find("Helpful Answer:") != -1:
|
522 |
-
response_answer = response_answer.split("Helpful Answer:")[-1]
|
523 |
-
response_sources = response["source_documents"]
|
524 |
-
response_source1 = response_sources[0].page_content.strip()
|
525 |
-
response_source2 = response_sources[1].page_content.strip()
|
526 |
-
response_source3 = response_sources[2].page_content.strip()
|
527 |
-
# Langchain sources are zero-based
|
528 |
-
response_source1_page = response_sources[0].metadata["page"] + 1
|
529 |
-
response_source2_page = response_sources[1].metadata["page"] + 1
|
530 |
-
response_source3_page = response_sources[2].metadata["page"] + 1
|
531 |
-
#print('chat response: ', response_answer)
|
532 |
-
#print('DB source', response_sources)
|
533 |
-
|
534 |
-
# Append user message and response to chat history
|
535 |
-
new_history = history + [(message, response_answer)]
|
536 |
-
# return gr.update(value=""), new_history, response_sources[0], response_sources[1]
|
537 |
-
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
|
538 |
-
|
539 |
-
|
540 |
-
def upload_file(file_obj):
|
541 |
-
list_file_path = []
|
542 |
-
for idx, file in enumerate(file_obj):
|
543 |
-
file_path = file_obj.name
|
544 |
-
list_file_path.append(file_path)
|
545 |
-
print(file_path)
|
546 |
-
# initialize_database(file_path, progress)
|
547 |
-
return list_file_path
|
548 |
-
|
549 |
-
def demo():
|
550 |
-
with gr.Blocks(theme="base") as demo:
|
551 |
-
vector_db = gr.State()
|
552 |
-
qa_chain = gr.State()
|
553 |
-
collection_name = gr.State()
|
554 |
-
|
555 |
-
gr.Markdown(
|
556 |
-
"""<center><h2>Creatore di chatbot basato su PDF</center></h2>
|
557 |
-
<h3>Potete fare domande su i vostri documenti PDF</h3>""")
|
558 |
-
|
559 |
-
gr.Markdown(
|
560 |
-
"""<b>Nota:</b> Questo assistente IA, utilizzando Langchain e modelli LLM open source, esegue generazione aumentata da recupero (RAG) dai vostri documenti PDF. \
|
561 |
-
L'interfaccia utente esplicitamente mostra i passaggi multipli per aiutare a comprendere il flusso di lavoro RAG.
|
562 |
-
Questo chatbot tiene conto delle domande passate nel generare le risposte (tramite memoria conversazionale), e include riferimenti ai documenti per scopi di chiarezza.<br>
|
563 |
-
<br><b>Avviso:</b> Questo spazio utilizza l'hardware di base CPU gratuito da Hugging Face. Alcuni passaggi e modelli LLM usati qui sotto (endpoint di inferenza gratuiti) possono richiedere del tempo per generare una risposta.
|
564 |
-
""")
|
565 |
-
|
566 |
-
with gr.Tab("Step 1 - Carica PDFs"):
|
567 |
-
with gr.Row():
|
568 |
-
document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload your PDF documents (single or multiple)")
|
569 |
-
# upload_btn = gr.UploadButton("Loading document...", height=100, file_count="multiple", file_types=["pdf"], scale=1)
|
570 |
-
|
571 |
-
with gr.Tab("Step 2 - Processa i documenti"):
|
572 |
-
with gr.Row():
|
573 |
-
db_btn = gr.Radio(["ChromaDB"], label="Vector database type", value = "ChromaDB", type="index", info="Choose your vector database")
|
574 |
-
with gr.Accordion("Opzioni Avanzate - Document text splitter", open=False):
|
575 |
-
with gr.Row():
|
576 |
-
slider_chunk_size = gr.Slider(minimum = 100, maximum = 1000, value=1000, step=20, label="Chunk size", info="Chunk size", interactive=True)
|
577 |
-
with gr.Row():
|
578 |
-
slider_chunk_overlap = gr.Slider(minimum = 10, maximum = 200, value=100, step=10, label="Chunk overlap", info="Chunk overlap", interactive=True)
|
579 |
-
with gr.Row():
|
580 |
-
db_progress = gr.Textbox(label="Vector database initialization", value="None")
|
581 |
-
with gr.Row():
|
582 |
-
db_btn = gr.Button("Genera vector database")
|
583 |
-
|
584 |
-
with gr.Tab("Step 3 - Inizializza QA chain"):
|
585 |
-
with gr.Row():
|
586 |
-
llm_btn = gr.Radio(list_llm_simple, \
|
587 |
-
label="LLM models", value = list_llm_simple[5], type="index", info="Scegli il tuo modello LLM")
|
588 |
-
with gr.Accordion("Advanced options - LLM model", open=False):
|
589 |
-
with gr.Row():
|
590 |
-
slider_temperature = gr.Slider(minimum = 0.01, maximum = 1.0, value=0.3, step=0.1, label="Temperature", info="Model temperature", interactive=True)
|
591 |
-
with gr.Row():
|
592 |
-
slider_maxtokens = gr.Slider(minimum = 224, maximum = 4096, value=1024, step=32, label="Max Tokens", info="Model max tokens", interactive=True)
|
593 |
-
with gr.Row():
|
594 |
-
slider_topk = gr.Slider(minimum = 1, maximum = 10, value=3, step=1, label="top-k samples", info="Model top-k samples", interactive=True)
|
595 |
-
with gr.Row():
|
596 |
-
language_btn = gr.Radio(["Italian", "English"], label="Linua", value="Italian", type="index", info="Seleziona la lingua per il chatbot")
|
597 |
-
with gr.Row():
|
598 |
-
llm_progress = gr.Textbox(value="None",label="QA chain initialization")
|
599 |
-
with gr.Row():
|
600 |
-
qachain_btn = gr.Button("Inizializza Question Answering chain")
|
601 |
-
|
602 |
-
|
603 |
-
with gr.Tab("Passo 4 - Chatbot"):
|
604 |
-
chatbot = gr.Chatbot(height=300)
|
605 |
-
with gr.Accordion("Opzioni avanzate - Riferimenti ai documenti", open=False):
|
606 |
-
with gr.Row():
|
607 |
-
doc_source1 = gr.Textbox(label="Riferimento 1", lines=2, container=True, scale=20)
|
608 |
-
source1_page = gr.Number(label="Pagina", scale=1)
|
609 |
-
with gr.Row():
|
610 |
-
doc_source2 = gr.Textbox(label="Riferimento 2", lines=2, container=True, scale=20)
|
611 |
-
source2_page = gr.Number(label="Pagina", scale=1)
|
612 |
-
with gr.Row():
|
613 |
-
doc_source3 = gr.Textbox(label="Riferimento 3", lines=2, container=True, scale=20)
|
614 |
-
source3_page = gr.Number(label="Pagina", scale=1)
|
615 |
-
with gr.Row():
|
616 |
-
msg = gr.Textbox(placeholder="Inserisci messaggio (es. 'Di cosa tratta questo documento?')", container=True)
|
617 |
-
with gr.Row():
|
618 |
-
submit_btn = gr.Button("Invia messaggio")
|
619 |
-
clear_btn = gr.ClearButton([msg, chatbot], value="Cancella conversazione")
|
620 |
-
|
621 |
-
# Preprocessing events
|
622 |
-
#upload_btn.upload(upload_file, inputs=[upload_btn], outputs=[document])
|
623 |
-
db_btn.click(initialize_database, \
|
624 |
-
inputs=[document, slider_chunk_size, slider_chunk_overlap], \
|
625 |
-
outputs=[vector_db, collection_name, db_progress])
|
626 |
-
qachain_btn.click(initialize_LLM, \
|
627 |
-
inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], \
|
628 |
-
outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0,"",0], \
|
629 |
-
inputs=None, \
|
630 |
-
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
|
631 |
-
queue=False)
|
632 |
-
|
633 |
-
# Chatbot events
|
634 |
-
msg.submit(conversation, \
|
635 |
-
inputs=[qa_chain, msg, chatbot], \
|
636 |
-
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
|
637 |
-
queue=False)
|
638 |
-
submit_btn.click(conversation, \
|
639 |
-
inputs=[qa_chain, msg, chatbot], \
|
640 |
-
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
|
641 |
-
queue=False)
|
642 |
-
clear_btn.click(lambda:[None,"",0,"",0,"",0], \
|
643 |
-
inputs=None, \
|
644 |
-
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
|
645 |
-
queue=False)
|
646 |
-
demo.queue().launch(debug=True)
|
647 |
-
|
648 |
-
|
649 |
-
if __name__ == "__main__":
|
650 |
-
demo()
|
|
|
236 |
doc_source2, source2_page,
|
237 |
doc_source3, source3_page,
|
238 |
doc_source4, source4_page,
|
239 |
+
doc_source5, source5_page], queue=False)
|
|
|
240 |
submit_btn.click(conversation,
|
241 |
inputs=[qa_chain, msg, chatbot],
|
242 |
outputs=[qa_chain, msg, chatbot,
|
|
|
244 |
doc_source2, source2_page,
|
245 |
doc_source3, source3_page,
|
246 |
doc_source4, source4_page,
|
247 |
+
doc_source5, source5_page], queue=False)
|
|
|
248 |
clear_btn.click(lambda:[None,"",0,"",0,"",0], \
|
249 |
inputs=None, \
|
250 |
outputs=[chatbot, \
|
|
|
258 |
|
259 |
|
260 |
if __name__ == "__main__":
|
261 |
+
demo()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|