import gradio as gr import os from langchain_community.document_loaders import PyPDFLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_community.vectorstores import Chroma from langchain.chains import ConversationalRetrievalChain from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_community.llms import HuggingFaceEndpoint from langchain.memory import ConversationBufferMemory from pathlib import Path import chromadb from unidecode import unidecode import re # List of available LLM models list_llm = [ "mistralai/Mistral-7B-Instruct-v0.2", "mistralai/Mixtral-8x7B-Instruct-v0.1", "google/gemma-7b-it", "google/gemma-2b-it", "HuggingFaceH4/zephyr-7b-beta", "HuggingFaceH4/zephyr-7b-gemma-v0.1", "meta-llama/Llama-2-7b-chat-hf", "microsoft/phi-2", "TinyLlama/TinyLlama-1.1B-Chat-v1.0", "mosaicml/mpt-7b-instruct", "tiiuae/falcon-7b-instruct", "google/flan-t5-xxl" ] list_llm_simple = [os.path.basename(llm) for llm in list_llm] def load_doc(list_file_path, chunk_size, chunk_overlap): loaders = [PyPDFLoader(x) for x in list_file_path] pages = [] for loader in loaders: pages.extend(loader.load()) text_splitter = RecursiveCharacterTextSplitter( chunk_size=chunk_size, chunk_overlap=chunk_overlap ) doc_splits = text_splitter.split_documents(pages) return doc_splits def create_db(splits, collection_name): embedding = HuggingFaceEmbeddings() new_client = chromadb.EphemeralClient() vectordb = Chroma.from_documents( documents=splits, embedding=embedding, client=new_client, collection_name=collection_name ) return vectordb def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()): progress(0.5, desc="Initializing HF Hub...") llm = HuggingFaceEndpoint( repo_id=llm_model, temperature=temperature, max_new_tokens=max_tokens, top_k=top_k ) progress(0.75, desc="Defining buffer memory...") memory = ConversationBufferMemory( memory_key="chat_history", output_key='answer', return_messages=True ) retriever = vector_db.as_retriever(search_kwargs={'k': 5}) # Increased from 3 to 5 progress(0.8, desc="Defining retrieval chain...") qa_chain = ConversationalRetrievalChain.from_llm( llm, retriever=retriever, chain_type="stuff", memory=memory, return_source_documents=True, verbose=False, ) progress(0.9, desc="Done!") return qa_chain def create_collection_name(filepath): collection_name = Path(filepath).stem collection_name = collection_name.replace(" ", "-") collection_name = unidecode(collection_name) collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name) collection_name = collection_name[:50] if len(collection_name) < 3: collection_name = collection_name + 'xyz' if not collection_name[0].isalnum(): collection_name = 'A' + collection_name[1:] if not collection_name[-1].isalnum(): collection_name = collection_name[:-1] + 'Z' return collection_name def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()): list_file_path = [x.name for x in list_file_obj if x is not None] progress(0.1, desc="Creating collection...") collection_name = create_collection_name(list_file_path[0]) progress(0.25, desc="Loading documents...") doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap) progress(0.5, desc="Generating vector database...") vector_db = create_db(doc_splits, collection_name) progress(0.9, desc="Done!") return vector_db, collection_name, "Completed!" def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()): llm_name = list_llm[llm_option] qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress) return qa_chain, "Completed!" def format_chat_history(message, chat_history): formatted_chat_history = [] for user_message, bot_message in chat_history: formatted_chat_history.append(f"User: {user_message}") formatted_chat_history.append(f"Assistant: {bot_message}") return formatted_chat_history def conversation(qa_chain, message, history): formatted_chat_history = format_chat_history(message, history) response = qa_chain({"question": message, "chat_history": formatted_chat_history}) response_answer = response["answer"] if response_answer.find("Helpful Answer:") != -1: response_answer = response_answer.split("Helpful Answer:")[-1] response_sources = response["source_documents"] source_info = [] for i in range(min(5, len(response_sources))): # Increased from 3 to 5 source = response_sources[i] source_info.append({ 'content': source.page_content.strip(), 'page': source.metadata["page"] + 1 }) new_history = history + [(message, response_answer)] return qa_chain, gr.update(value=""), new_history, *[info['content'] for info in source_info], *[info['page'] for info in source_info] # The rest of the code (demo function and UI setup) remains largely the same, # but update the outputs of the conversation function to handle 5 sources instead of 3. def upload_file(file_obj): list_file_path = [] for idx, file in enumerate(file_obj): file_path = file_obj.name list_file_path.append(file_path) print(file_path) # initialize_database(file_path, progress) return list_file_path def demo(): with gr.Blocks(theme="base") as demo: vector_db = gr.State() qa_chain = gr.State() collection_name = gr.State() gr.Markdown( """

Creatore di chatbot basato su PDF

Potete fare domande su i vostri documenti PDF

""") gr.Markdown( """Nota: Questo assistente IA, utilizzando Langchain e modelli LLM open source, esegue generazione aumentata da recupero (RAG) dai vostri documenti PDF. \ L'interfaccia utente esplicitamente mostra i passaggi multipli per aiutare a comprendere il flusso di lavoro RAG. Questo chatbot tiene conto delle domande passate nel generare le risposte (tramite memoria conversazionale), e include riferimenti ai documenti per scopi di chiarezza.

Avviso: Questo spazio utilizza l'hardware di base CPU gratuito da Hugging Face. Alcuni passaggi e modelli LLM usati qui sotto (endpoint di inferenza gratuiti) possono richiedere del tempo per generare una risposta. """) with gr.Tab("Step 1 - Carica PDFs"): with gr.Row(): document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload your PDF documents (single or multiple)") # upload_btn = gr.UploadButton("Loading document...", height=100, file_count="multiple", file_types=["pdf"], scale=1) with gr.Tab("Step 2 - Processa i documenti"): with gr.Row(): db_btn = gr.Radio(["ChromaDB"], label="Vector database type", value = "ChromaDB", type="index", info="Choose your vector database") with gr.Accordion("Opzioni Avanzate - Document text splitter", open=False): with gr.Row(): slider_chunk_size = gr.Slider(minimum = 100, maximum = 1000, value=1000, step=20, label="Chunk size", info="Chunk size", interactive=True) with gr.Row(): slider_chunk_overlap = gr.Slider(minimum = 10, maximum = 200, value=100, step=10, label="Chunk overlap", info="Chunk overlap", interactive=True) with gr.Row(): db_progress = gr.Textbox(label="Vector database initialization", value="None") with gr.Row(): db_btn = gr.Button("Genera vector database") with gr.Tab("Step 3 - Inizializza QA chain"): with gr.Row(): llm_btn = gr.Radio(list_llm_simple, \ label="LLM models", value = list_llm_simple[5], type="index", info="Scegli il tuo modello LLM") with gr.Accordion("Advanced options - LLM model", open=False): with gr.Row(): slider_temperature = gr.Slider(minimum = 0.01, maximum = 1.0, value=0.3, step=0.1, label="Temperature", info="Model temperature", interactive=True) with gr.Row(): slider_maxtokens = gr.Slider(minimum = 224, maximum = 4096, value=1024, step=32, label="Max Tokens", info="Model max tokens", interactive=True) with gr.Row(): slider_topk = gr.Slider(minimum = 1, maximum = 10, value=3, step=1, label="top-k samples", info="Model top-k samples", interactive=True) with gr.Row(): language_btn = gr.Radio(["Italian", "English"], label="Linua", value="Italian", type="index", info="Seleziona la lingua per il chatbot") with gr.Row(): llm_progress = gr.Textbox(value="None",label="QA chain initialization") with gr.Row(): qachain_btn = gr.Button("Inizializza Question Answering chain") with gr.Tab("Passo 4 - Chatbot"): chatbot = gr.Chatbot(height=300) with gr.Accordion("Opzioni avanzate - Riferimenti ai documenti", open=False): with gr.Row(): doc_source1 = gr.Textbox(label="Riferimento 1", lines=2, container=True, scale=20) source1_page = gr.Number(label="Pagina", scale=1) with gr.Row(): doc_source2 = gr.Textbox(label="Riferimento 2", lines=2, container=True, scale=20) source2_page = gr.Number(label="Pagina", scale=1) with gr.Row(): doc_source3 = gr.Textbox(label="Riferimento 3", lines=2, container=True, scale=20) source3_page = gr.Number(label="Pagina", scale=1) with gr.Row(): msg = gr.Textbox(placeholder="Inserisci messaggio (es. 'Di cosa tratta questo documento?')", container=True) with gr.Row(): submit_btn = gr.Button("Invia messaggio") clear_btn = gr.ClearButton([msg, chatbot], value="Cancella conversazione") # Preprocessing events #upload_btn.upload(upload_file, inputs=[upload_btn], outputs=[document]) db_btn.click(initialize_database, \ inputs=[document, slider_chunk_size, slider_chunk_overlap], \ outputs=[vector_db, collection_name, db_progress]) qachain_btn.click(initialize_LLM, \ inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], \ outputs=[qa_chain, llm_progress]).then(lambda:[None, "", 0, "", 0, "", 0, "", 0, "", 0], \ inputs=None, \ outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page, doc_source4, source4_page, doc_source5, source5_page], queue=False) # Chatbot events msg.submit(conversation, \ inputs=[qa_chain, msg, chatbot], \ outputs=[qa_chain, msg, chatbot, \ doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page, doc_source4, source4_page, doc_source5, source5_page], queue=False) submit_btn.click(conversation, inputs=[qa_chain, msg, chatbot], outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page, doc_source4, source4_page, doc_source5, source5_page], queue=False) clear_btn.click( lambda: [None, "", 0, "", 0, "", 0, "", 0, "", 0], inputs=None, outputs=[ chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page, doc_source4, source4_page, doc_source5, source5_page ], queue=False ) demo.queue().launch(debug=True) if __name__ == "__main__": demo()