from langchain_huggingface import HuggingFaceEmbeddings import gradio as gr import os from googletrans import Translator from langchain_community.vectorstores import Chroma from langchain_community.document_loaders import UnstructuredPDFLoader, PyPDFLoader from langchain.text_splitter import CharacterTextSplitter from langchain.chains import ConversationalRetrievalChain from langchain.schema import Document from langchain.memory import ConversationBufferMemory from langchain.callbacks.manager import CallbackManager from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler from langchain.llms.base import LLM from typing import List, Dict, Any, Optional from pydantic import BaseModel from langchain.llms.base import LLM from transformers import AutoTokenizer, AutoModelForCausalLM import torch import logging # Configurazione del logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # Aggiornamento dell'inizializzazione di HuggingFaceEmbeddings embedding_function = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2") # Definizione della lista di modelli LLM list_llm_simple = ["Gemma 7B (Italian)", "Mistral 7B"] list_llm = ["google/gemma-7b-it", "mistralai/Mistral-7B-Instruct-v0.2"] def initialize_database(document, chunk_size, chunk_overlap, progress=gr.Progress()): logger.info("Initializing database...") documents = [] splitter = CharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap) for file in document: try: loader = UnstructuredPDFLoader(file.name) docs = loader.load() except ImportError: logger.warning("UnstructuredPDFLoader non disponibile. Tentativo di utilizzo di PyPDFLoader.") try: loader = PyPDFLoader(file.name) docs = loader.load() except ImportError: logger.error("Impossibile caricare il documento PDF. Assicurati di aver installato 'unstructured' o 'pypdf'.") return None, None, "Errore: Pacchetti necessari non installati. Esegui 'pip install unstructured pypdf' e riprova." for doc in docs: text_chunks = splitter.split_text(doc.page_content) for chunk in text_chunks: documents.append(Document(page_content=chunk, metadata={"filename": file.name, "page": doc.metadata.get("page", 0)})) if not documents: return None, None, "Errore: Nessun documento caricato correttamente." vectorstore = Chroma.from_documents(documents, embedding_function) progress.update(0.5) logger.info("Database initialized successfully.") return vectorstore, None, "Initialized" # Aggiunto None come secondo output def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress(), language="italiano"): logger.info("Initializing LLM chain...") # Define the default LLMS based on the language if language == "italiano": default_llm = "google/gemma-7b-it" else: default_llm = "google/gemma-7b" # English version # Try to load the tokenizer and model with authentication try: # Option 1: Using HF_TOKEN environment variable hf_token = os.getenv("HF_TOKEN") if not hf_token: raise ValueError("HF_TOKEN environment variable is not set") tokenizer = AutoTokenizer.from_pretrained(default_llm, token=hf_token) model = AutoModelForCausalLM.from_pretrained(default_llm, token=hf_token) except Exception as e: logger.error(f"Error initializing LLM: {e}") return None, "Failed to initialize LLM" # Resize token embeddings if needed if len(tokenizer) > model.config.max_position_embeddings: model.resize_token_embeddings(len(tokenizer)) qa_chain = ConversationalRetrievalChain.from_llm( llm=model, retriever=vector_db.as_retriever(), chain_type="stuff", temperature=llm_temperature, verbose=False, ) progress.update(1.0) logger.info("LLM chain initialized successfully.") return qa_chain, "Complete!" def format_chat_history(message, history): chat_history = "" for item in history: chat_history += f"\nUser: {item[0]}\nAI: {item[1]}" chat_history += f"\n\nUser: {message}" return chat_history def translate_text(text, src_lang, dest_lang): translator = Translator() result = translator.translate(text, src=src_lang, dest=dest_lang) return result.text def conversation(qa_chain, message, history, language): formatted_chat_history = format_chat_history(message, history) response = qa_chain({"question": message, "chat_history": formatted_chat_history}) response_answer = response["answer"] if response_answer.find("Helpful Answer:")!= -1: response_answer = response_answer.split("Helpful Answer:")[-1] if language != "italian": try: translated_response = translate_text(response_answer, src="en", dest="it") except Exception as e: logger.error(f"Error translating response: {e}") translated_response = response_answer else: translated_response = response_answer response_sources = response["source_documents"] response_source1 = response_sources[0].page_content.strip() response_source2 = response_sources[1].page_content.strip() response_source3 = response_sources[2].page_content.strip() response_source1_page = response_sources[0].metadata["page"] + 1 response_source2_page = response_sources[1].metadata["page"] + 1 response_source3_page = response_sources[2].metadata["page"] + 1 new_history = history + [(message, translated_response)] return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page def demo(): with gr.Blocks(theme="base") as demo: vector_db = gr.State() qa_chain = gr.State() collection_name = gr.State() language = gr.State(value="italian") # Modifica qui gr.Markdown( """