Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Upload 2 files
Browse files- app.py +184 -0
- requirements.txt +1 -0
app.py
ADDED
@@ -0,0 +1,184 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import json
|
3 |
+
from gliner2 import GLiNER2
|
4 |
+
from huggingface_hub import login
|
5 |
+
import os
|
6 |
+
|
7 |
+
# Get API key from environment variable
|
8 |
+
hf_token = os.getenv("HF_TOKEN")
|
9 |
+
|
10 |
+
# Authenticate with Hugging Face
|
11 |
+
login(hf_token)
|
12 |
+
|
13 |
+
# βββ Load model once βββ
|
14 |
+
model = GLiNER2.from_pretrained("fastino/gliner2-base-0207")
|
15 |
+
|
16 |
+
def run_ner(text, types_csv, descs):
|
17 |
+
types = [t.strip() for t in types_csv.split(",") if t.strip()]
|
18 |
+
desc_map = {k: v for line in descs.split("\n") if ":" in line for k,v in [line.split(":",1)]}
|
19 |
+
inp = desc_map if desc_map else types
|
20 |
+
res = model.extract_entities(text=text, entity_types=inp, include_confidence=True)
|
21 |
+
return model.pretty_print_results(res, include_confidence=True)
|
22 |
+
|
23 |
+
def run_class(text, task, labels_csv, descs, multi):
|
24 |
+
labels = [l.strip() for l in labels_csv.split(",") if l.strip()]
|
25 |
+
desc_map = {k: v for line in descs.split("\n") if ":" in line for k,v in [line.split(":",1)]}
|
26 |
+
inp = desc_map if desc_map else labels
|
27 |
+
tasks = {
|
28 |
+
task: {
|
29 |
+
"labels": list(inp.keys()) if isinstance(inp,dict) else inp,
|
30 |
+
"multi_label": multi,
|
31 |
+
**({"label_descriptions": inp} if isinstance(inp,dict) else {})
|
32 |
+
}
|
33 |
+
}
|
34 |
+
res = model.classify_text(text=text, tasks=tasks, include_confidence=True)
|
35 |
+
return model.pretty_print_results(res, include_confidence=True)
|
36 |
+
|
37 |
+
def run_struct(text, struct_json):
|
38 |
+
try:
|
39 |
+
cfg = json.loads(struct_json)
|
40 |
+
except json.JSONDecodeError as e:
|
41 |
+
return f"β Invalid JSON: {e}"
|
42 |
+
res = model.extract_json(text=text, structures=cfg, include_confidence=True)
|
43 |
+
return model.pretty_print_results(res, include_confidence=True)
|
44 |
+
|
45 |
+
# βββ Clean White Theme & Layout βββ
|
46 |
+
custom_css = """
|
47 |
+
body {
|
48 |
+
background: #ffffff !important;
|
49 |
+
font-family: 'Helvetica Neue', sans-serif;
|
50 |
+
color: #333333;
|
51 |
+
}
|
52 |
+
.gradio-container {
|
53 |
+
max-width: 600px;
|
54 |
+
padding: 0;
|
55 |
+
background: #ffffff;
|
56 |
+
}
|
57 |
+
header, .logo, .subtitle {
|
58 |
+
border: none !important;
|
59 |
+
box-shadow: none !important;
|
60 |
+
}
|
61 |
+
.gradio-container * {
|
62 |
+
box-shadow: none !important;
|
63 |
+
}
|
64 |
+
.card {
|
65 |
+
background: #ffffff;
|
66 |
+
padding: 15px;
|
67 |
+
}
|
68 |
+
label {
|
69 |
+
color: #444444;
|
70 |
+
font-weight: 600;
|
71 |
+
}
|
72 |
+
.gr-textbox textarea,
|
73 |
+
.gr-code,
|
74 |
+
.gr-dropdown,
|
75 |
+
.gr-checkbox,
|
76 |
+
.gr-button {
|
77 |
+
background: #ffffff !important;
|
78 |
+
box-shadow: none !important;
|
79 |
+
}
|
80 |
+
.accordion-button {
|
81 |
+
border: none !important;
|
82 |
+
box-shadow: none !important;
|
83 |
+
font-weight: 500;
|
84 |
+
}
|
85 |
+
.gr-button.primary {
|
86 |
+
background: #5b8def;
|
87 |
+
color: #ffffff;
|
88 |
+
}
|
89 |
+
"""
|
90 |
+
|
91 |
+
with gr.Blocks(theme=gr.themes.Base(), css=custom_css) as demo:
|
92 |
+
# Header
|
93 |
+
gr.HTML("""
|
94 |
+
<header style="text-align:center; padding:10px 0;">
|
95 |
+
<div class="logo" style="font-size:1.8rem; font-weight:700; color:#333333;">π― GLiNER2</div>
|
96 |
+
<div class="subtitle" style="font-size:0.85rem; color:#777777;">Compact β’ White Theme β’ Screenshot-Ready</div>
|
97 |
+
</header>
|
98 |
+
""")
|
99 |
+
|
100 |
+
with gr.Tabs():
|
101 |
+
# Structure Extraction Tab
|
102 |
+
with gr.TabItem("Hierarchical Structure Extraction"):
|
103 |
+
with gr.Row(elem_classes="card"):
|
104 |
+
with gr.Column(scale=2):
|
105 |
+
txt3 = gr.Textbox(
|
106 |
+
label="Input text", lines=3,
|
107 |
+
value=(
|
108 |
+
"The Acme Pro Laptop 15β features an Intel Core i7 processor, 16GB RAM, 512GB SSD, "
|
109 |
+
"and a 15.6-inch 4K display. Priced at $1,499, it offers Wi-Fi 6, Bluetooth 5.2, and "
|
110 |
+
"a backlit keyboard."
|
111 |
+
)
|
112 |
+
)
|
113 |
+
struct3 = gr.Code(
|
114 |
+
language="json", lines=7,
|
115 |
+
label = "Schema",
|
116 |
+
value=json.dumps({
|
117 |
+
"product": [
|
118 |
+
"name::str::Product name and model",
|
119 |
+
"price::str::Product cost",
|
120 |
+
"features::list::Key product features",
|
121 |
+
"category::[electronics|software|hardware]::str"
|
122 |
+
]
|
123 |
+
}, indent=2)
|
124 |
+
)
|
125 |
+
btn3 = gr.Button("Predict", variant="primary")
|
126 |
+
with gr.Column(scale=1):
|
127 |
+
out3 = gr.Code(language="json", lines=8, label="Output")
|
128 |
+
btn3.click(run_struct, [txt3, struct3], out3)
|
129 |
+
|
130 |
+
# NER Tab
|
131 |
+
with gr.TabItem("Named Entity Recognition"):
|
132 |
+
with gr.Row(elem_classes="card"):
|
133 |
+
with gr.Column(scale=2):
|
134 |
+
txt1 = gr.Textbox(
|
135 |
+
label="Text", lines=4,
|
136 |
+
value=(
|
137 |
+
"Dr. Alice Smith, Chief Data Scientist at OpenAI, spoke at the AI Summit "
|
138 |
+
"in San Francisco on June 12, 2025, about advancements in large-scale language "
|
139 |
+
"models, ethical AI guidelines, and real-world GPT-4 Turbo applications."
|
140 |
+
)
|
141 |
+
)
|
142 |
+
types1 = gr.Textbox(label="Types (csv)", value="person, title, organization, event, location, date, topic")
|
143 |
+
with gr.Accordion("Descriptions (opt)", open=False):
|
144 |
+
desc1 = gr.Textbox(lines=4, placeholder=(
|
145 |
+
"person: Full names\n"
|
146 |
+
"title: Roles\n"
|
147 |
+
"organization: Companies\n"
|
148 |
+
"event: Conferences\n"
|
149 |
+
"location: Cities\n"
|
150 |
+
"date: Temporal expressions"
|
151 |
+
))
|
152 |
+
btn1 = gr.Button("Predict", variant="primary")
|
153 |
+
with gr.Column(scale=1):
|
154 |
+
out1 = gr.Code(language="json", lines=8)
|
155 |
+
btn1.click(run_ner, [txt1, types1, desc1], out1)
|
156 |
+
|
157 |
+
# Classification Tab
|
158 |
+
with gr.TabItem("Text Classification"):
|
159 |
+
with gr.Row(elem_classes="card"):
|
160 |
+
with gr.Column(scale=2):
|
161 |
+
txt2 = gr.Textbox(
|
162 |
+
label="Text", lines=4,
|
163 |
+
value=(
|
164 |
+
"The Q2 2025 financial report shows a 15% revenue increase driven by cloud "
|
165 |
+
"services, offset by a 12% rise in R&D costs. Overall sentiment is cautiously "
|
166 |
+
"optimistic among stakeholders."
|
167 |
+
)
|
168 |
+
)
|
169 |
+
task2 = gr.Textbox(label="Task", value="financial_sentiment")
|
170 |
+
labs2 = gr.Textbox(label="Labels (csv)", value="positive, negative, neutral, mixed, uncertain")
|
171 |
+
with gr.Accordion("Label Descriptions (opt)", open=False):
|
172 |
+
desc2 = gr.Textbox(lines=3, placeholder=(
|
173 |
+
"positive: Favorable outcomes\n"
|
174 |
+
"negative: Concerns raised\n"
|
175 |
+
"neutral: Balanced reporting"
|
176 |
+
))
|
177 |
+
multi2 = gr.Checkbox(label="Multi-label?", value=True)
|
178 |
+
btn2 = gr.Button("Predict", variant="primary")
|
179 |
+
with gr.Column(scale=1):
|
180 |
+
out2 = gr.Code(language="json", lines=8)
|
181 |
+
btn2.click(run_class, [txt2, task2, labs2, desc2, multi2], out2)
|
182 |
+
|
183 |
+
|
184 |
+
demo.launch(share=False, width=600, height=300)
|
requirements.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
gliner2
|