Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Update app.py
Browse files
app.py
CHANGED
@@ -75,6 +75,126 @@ header.brand .subtitle {
|
|
75 |
}
|
76 |
"""
|
77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="purple", secondary_hue="blue"), css=custom_css) as demo:
|
79 |
# Header
|
80 |
gr.HTML(
|
@@ -91,11 +211,12 @@ with gr.Blocks(theme=gr.themes.Soft(primary_hue="purple", secondary_hue="blue"),
|
|
91 |
with gr.TabItem("π Named Entity Recognition"):
|
92 |
with gr.Row(elem_classes="card"):
|
93 |
with gr.Column(scale=2):
|
94 |
-
txt1 = gr.Textbox(label="Input Text", lines=5
|
95 |
-
types1 = gr.Textbox(label="Entity Types (CSV)"
|
96 |
with gr.Accordion("Optional Descriptions", open=False):
|
97 |
-
desc1 = gr.Textbox(lines=3
|
98 |
btn1 = gr.Button("Extract Entities", variant="primary")
|
|
|
99 |
with gr.Column(scale=1):
|
100 |
out1 = gr.Code(language="json", label="Results", lines=8)
|
101 |
btn1.click(run_ner, inputs=[txt1, types1, desc1], outputs=out1)
|
@@ -104,13 +225,14 @@ with gr.Blocks(theme=gr.themes.Soft(primary_hue="purple", secondary_hue="blue"),
|
|
104 |
with gr.TabItem("π Text Classification"):
|
105 |
with gr.Row(elem_classes="card"):
|
106 |
with gr.Column(scale=2):
|
107 |
-
txt2 = gr.Textbox(label="Input Text", lines=5
|
108 |
-
task2 = gr.Textbox(label="Task Name"
|
109 |
-
labs2 = gr.Textbox(label="Labels (CSV)"
|
110 |
with gr.Accordion("Optional Label Descriptions", open=False):
|
111 |
-
desc2 = gr.Textbox(lines=3
|
112 |
-
multi2 = gr.Checkbox(label="Multi-label?"
|
113 |
btn2 = gr.Button("Classify Text", variant="primary")
|
|
|
114 |
with gr.Column(scale=1):
|
115 |
out2 = gr.Code(language="json", label="Results", lines=8)
|
116 |
btn2.click(run_class, inputs=[txt2, task2, labs2, desc2, multi2], outputs=out2)
|
@@ -119,16 +241,10 @@ with gr.Blocks(theme=gr.themes.Soft(primary_hue="purple", secondary_hue="blue"),
|
|
119 |
with gr.TabItem("π Structure Extraction"):
|
120 |
with gr.Row(elem_classes="card"):
|
121 |
with gr.Column(scale=2):
|
122 |
-
txt3 = gr.Textbox(label="Input Text", lines=5
|
123 |
-
struct3 = gr.Code(language="json", label="Schema (JSON)", lines=8
|
124 |
-
"product": [
|
125 |
-
"name::str::Product name and model",
|
126 |
-
"price::str::Product price",
|
127 |
-
"features::list::Key features",
|
128 |
-
"category::str::Product category"
|
129 |
-
]
|
130 |
-
}, indent=2))
|
131 |
btn3 = gr.Button("Extract Structure", variant="primary")
|
|
|
132 |
with gr.Column(scale=1):
|
133 |
out3 = gr.Code(language="json", label="Results", lines=8)
|
134 |
btn3.click(run_struct, inputs=[txt3, struct3], outputs=out3)
|
|
|
75 |
}
|
76 |
"""
|
77 |
|
78 |
+
# Pre-made examples for each task (5 per tab)
|
79 |
+
ner_examples = [
|
80 |
+
[
|
81 |
+
"Barack Obama visited Berlin in July 2013.",
|
82 |
+
"person,location,date",
|
83 |
+
"person: Full name\nlocation: City\ndate: Month and year"
|
84 |
+
],
|
85 |
+
[
|
86 |
+
"Apple released the iPhone 13 on September 14, 2021.",
|
87 |
+
"organization,product,date",
|
88 |
+
"organization: Company name\nproduct: Device name\ndate: Full date"
|
89 |
+
],
|
90 |
+
[
|
91 |
+
"Elon Musk announced Tesla's new Roadster at the LA Auto Show.",
|
92 |
+
"person,organization,event,location",
|
93 |
+
"person: Full name\norganization: Company name\nevent: Conference or show\nlocation: Venue"
|
94 |
+
],
|
95 |
+
[
|
96 |
+
"The UEFA Champions League Final takes place in Istanbul this year.",
|
97 |
+
"event,location,date",
|
98 |
+
"event: Sports event\nlocation: City\ndate: Year"
|
99 |
+
],
|
100 |
+
[
|
101 |
+
"Microsoft acquired GitHub in 2018 for $7.5 billion.",
|
102 |
+
"organization,organization,date,price",
|
103 |
+
"organization: Company name\ndate: Year\nprice: Acquisition value"
|
104 |
+
]
|
105 |
+
]
|
106 |
+
|
107 |
+
class_examples = [
|
108 |
+
[
|
109 |
+
"The movie was a thrilling experience with stunning visuals.",
|
110 |
+
"sentiment",
|
111 |
+
"positive,negative,neutral",
|
112 |
+
"positive: Positive sentiment\nnegative: Negative sentiment\nneutral: Mixed or neutral",
|
113 |
+
False
|
114 |
+
],
|
115 |
+
[
|
116 |
+
"Our Q1 results were disappointing, with sales down 10%.",
|
117 |
+
"financial_sentiment",
|
118 |
+
"positive,negative,neutral",
|
119 |
+
"positive: Gains\nnegative: Losses\nneutral: Flat",
|
120 |
+
False
|
121 |
+
],
|
122 |
+
[
|
123 |
+
"I love the new interface but dislike the slow loading time.",
|
124 |
+
"feedback",
|
125 |
+
"praise,complaint,suggestion",
|
126 |
+
"praise: Positive feedback\ncomplaint: Negative feedback\nsuggestion: Improvement ideas",
|
127 |
+
True
|
128 |
+
],
|
129 |
+
[
|
130 |
+
"The product meets expectations but could use more features.",
|
131 |
+
"review",
|
132 |
+
"positive,negative",
|
133 |
+
"positive: Meets expectations\nnegative: Lacking",
|
134 |
+
False
|
135 |
+
],
|
136 |
+
[
|
137 |
+
"Customer support was helpful, though response times were slow.",
|
138 |
+
"support_sentiment",
|
139 |
+
"positive,negative,neutral",
|
140 |
+
"positive: Helpful support\nnegative: Unhelpful support\nneutral: Mixed experiences",
|
141 |
+
True
|
142 |
+
]
|
143 |
+
]
|
144 |
+
|
145 |
+
struct_examples = [
|
146 |
+
[
|
147 |
+
"The iPad Pro comes with an M1 chip, 8GB RAM, 256GB storage, and a 12.9-inch display.",
|
148 |
+
json.dumps({
|
149 |
+
"device": [
|
150 |
+
"name::str::Model name",
|
151 |
+
"specs::list::Hardware specifications",
|
152 |
+
"price::str::Device cost"
|
153 |
+
]
|
154 |
+
}, indent=2)
|
155 |
+
],
|
156 |
+
[
|
157 |
+
"Plan: Write report (Due: May 10), Review code (Due: May 15), Deploy (Due: May 20)",
|
158 |
+
json.dumps({
|
159 |
+
"tasks": [
|
160 |
+
"title::str::Task title",
|
161 |
+
"due_date::str::Due date"
|
162 |
+
]
|
163 |
+
}, indent=2)
|
164 |
+
],
|
165 |
+
[
|
166 |
+
"Product: Coffee Mug; Price: $12; Features: ceramic, dishwasher-safe, 12oz capacity.",
|
167 |
+
json.dumps({
|
168 |
+
"product": [
|
169 |
+
"name::str::Product name",
|
170 |
+
"price::str::Product price",
|
171 |
+
"features::list::Product features"
|
172 |
+
]
|
173 |
+
}, indent=2)
|
174 |
+
],
|
175 |
+
[
|
176 |
+
"Event: AI Conference; Date: August 22, 2025; Location: Paris; Topics: ML, Ethics, Robotics.",
|
177 |
+
json.dumps({
|
178 |
+
"event": [
|
179 |
+
"name::str::Event name",
|
180 |
+
"date::str::Event date",
|
181 |
+
"location::str::Event location",
|
182 |
+
"topics::list::Covered topics"
|
183 |
+
]
|
184 |
+
}, indent=2)
|
185 |
+
],
|
186 |
+
[
|
187 |
+
"Recipe: Pancakes; Ingredients: flour, eggs, milk; Steps: mix, cook, serve.",
|
188 |
+
json.dumps({
|
189 |
+
"recipe": [
|
190 |
+
"title::str::Recipe title",
|
191 |
+
"ingredients::list::List of ingredients",
|
192 |
+
"steps::list::Preparation steps"
|
193 |
+
]
|
194 |
+
}, indent=2)
|
195 |
+
]
|
196 |
+
]
|
197 |
+
|
198 |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="purple", secondary_hue="blue"), css=custom_css) as demo:
|
199 |
# Header
|
200 |
gr.HTML(
|
|
|
211 |
with gr.TabItem("π Named Entity Recognition"):
|
212 |
with gr.Row(elem_classes="card"):
|
213 |
with gr.Column(scale=2):
|
214 |
+
txt1 = gr.Textbox(label="Input Text", lines=5)
|
215 |
+
types1 = gr.Textbox(label="Entity Types (CSV)")
|
216 |
with gr.Accordion("Optional Descriptions", open=False):
|
217 |
+
desc1 = gr.Textbox(lines=3)
|
218 |
btn1 = gr.Button("Extract Entities", variant="primary")
|
219 |
+
gr.Examples(examples=ner_examples, inputs=[txt1, types1, desc1], outputs=None, fn=lambda *args: None, cache_examples=False)
|
220 |
with gr.Column(scale=1):
|
221 |
out1 = gr.Code(language="json", label="Results", lines=8)
|
222 |
btn1.click(run_ner, inputs=[txt1, types1, desc1], outputs=out1)
|
|
|
225 |
with gr.TabItem("π Text Classification"):
|
226 |
with gr.Row(elem_classes="card"):
|
227 |
with gr.Column(scale=2):
|
228 |
+
txt2 = gr.Textbox(label="Input Text", lines=5)
|
229 |
+
task2 = gr.Textbox(label="Task Name")
|
230 |
+
labs2 = gr.Textbox(label="Labels (CSV)")
|
231 |
with gr.Accordion("Optional Label Descriptions", open=False):
|
232 |
+
desc2 = gr.Textbox(lines=3)
|
233 |
+
multi2 = gr.Checkbox(label="Multi-label?")
|
234 |
btn2 = gr.Button("Classify Text", variant="primary")
|
235 |
+
gr.Examples(examples=class_examples, inputs=[txt2, task2, labs2, desc2, multi2], outputs=None, fn=lambda *args: None, cache_examples=False)
|
236 |
with gr.Column(scale=1):
|
237 |
out2 = gr.Code(language="json", label="Results", lines=8)
|
238 |
btn2.click(run_class, inputs=[txt2, task2, labs2, desc2, multi2], outputs=out2)
|
|
|
241 |
with gr.TabItem("π Structure Extraction"):
|
242 |
with gr.Row(elem_classes="card"):
|
243 |
with gr.Column(scale=2):
|
244 |
+
txt3 = gr.Textbox(label="Input Text", lines=5)
|
245 |
+
struct3 = gr.Code(language="json", label="Schema (JSON)", lines=8)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
246 |
btn3 = gr.Button("Extract Structure", variant="primary")
|
247 |
+
gr.Examples(examples=struct_examples, inputs=[txt3, struct3], outputs=None, fn=lambda *args: None, cache_examples=False)
|
248 |
with gr.Column(scale=1):
|
249 |
out3 = gr.Code(language="json", label="Results", lines=8)
|
250 |
btn3.click(run_struct, inputs=[txt3, struct3], outputs=out3)
|