File size: 8,505 Bytes
01e4a7b
 
 
 
 
 
 
 
 
 
1255de4
6a84ce9
1255de4
01e4a7b
 
 
52f5c65
01e4a7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a84ce9
01e4a7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a84ce9
 
1255de4
 
 
92dceb8
1255de4
 
 
1700e55
1255de4
d7adee4
1700e55
92dceb8
3a4d0fe
6a84ce9
 
267eb29
6a84ce9
 
 
 
 
 
 
 
 
 
1255de4
6a84ce9
 
1e0a351
6a84ce9
1255de4
6a84ce9
 
1e0a351
6a84ce9
 
 
 
1255de4
01e4a7b
 
a2b062f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import os
import pathlib
import tempfile
from collections.abc import Iterator
from threading import Thread

import av
import gradio as gr
import spaces
import torch
from fastrtc import AdditionalOutputs, ReplyOnPause, WebRTC, WebRTCData, get_hf_turn_credentials
from gradio.processing_utils import save_audio_to_cache
from gradio.utils import get_upload_folder
from transformers import AutoModelForImageTextToText, AutoProcessor
from transformers.generation.streamers import TextIteratorStreamer

model_id = "google/gemma-3n-E4B-it"

processor = AutoProcessor.from_pretrained(model_id)
model = AutoModelForImageTextToText.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16)

IMAGE_FILE_TYPES = (".jpg", ".jpeg", ".png", ".webp")
VIDEO_FILE_TYPES = (".mp4", ".mov", ".webm")
AUDIO_FILE_TYPES = (".mp3", ".wav")

GRADIO_TEMP_DIR = get_upload_folder()

TARGET_FPS = int(os.getenv("TARGET_FPS", "3"))
MAX_FRAMES = int(os.getenv("MAX_FRAMES", "30"))
MAX_INPUT_TOKENS = int(os.getenv("MAX_INPUT_TOKENS", "10_000"))


def get_file_type(path: str) -> str:
    if path.endswith(IMAGE_FILE_TYPES):
        return "image"
    if path.endswith(VIDEO_FILE_TYPES):
        return "video"
    if path.endswith(AUDIO_FILE_TYPES):
        return "audio"
    error_message = f"Unsupported file type: {path}"
    raise ValueError(error_message)


def count_files_in_new_message(paths: list[str]) -> tuple[int, int]:
    video_count = 0
    non_video_count = 0
    for path in paths:
        if path.endswith(VIDEO_FILE_TYPES):
            video_count += 1
        else:
            non_video_count += 1
    return video_count, non_video_count


def validate_media_constraints(message: dict) -> bool:
    video_count, non_video_count = count_files_in_new_message(message["files"])
    if video_count > 1:
        gr.Warning("Only one video is supported.")
        return False
    if video_count == 1 and non_video_count > 0:
        gr.Warning("Mixing images and videos is not allowed.")
        return False
    return True


def extract_frames_to_tempdir(
    video_path: str,
    target_fps: float,
    max_frames: int | None = None,
    parent_dir: str | None = None,
    prefix: str = "frames_",
) -> str:
    temp_dir = tempfile.mkdtemp(prefix=prefix, dir=parent_dir)

    container = av.open(video_path)
    video_stream = container.streams.video[0]

    if video_stream.duration is None or video_stream.time_base is None:
        raise ValueError("video_stream is missing duration or time_base")

    time_base = video_stream.time_base
    duration = float(video_stream.duration * time_base)
    interval = 1.0 / target_fps

    total_frames = int(duration * target_fps)
    if max_frames is not None:
        total_frames = min(total_frames, max_frames)

    target_times = [i * interval for i in range(total_frames)]
    target_index = 0

    for frame in container.decode(video=0):
        if frame.pts is None:
            continue

        timestamp = float(frame.pts * time_base)

        if target_index < len(target_times) and abs(timestamp - target_times[target_index]) < (interval / 2):
            frame_path = pathlib.Path(temp_dir) / f"frame_{target_index:04d}.jpg"
            frame.to_image().save(frame_path)
            target_index += 1

            if max_frames is not None and target_index >= max_frames:
                break

    container.close()
    return temp_dir


def process_new_user_message(message: dict) -> list[dict]:
    if not message["files"]:
        return [{"type": "text", "text": message["text"]}]

    file_types = [get_file_type(path) for path in message["files"]]

    if len(file_types) == 1 and file_types[0] == "video":
        gr.Info(f"Video will be processed at {TARGET_FPS} FPS, max {MAX_FRAMES} frames in this Space.")

        temp_dir = extract_frames_to_tempdir(
            message["files"][0],
            target_fps=TARGET_FPS,
            max_frames=MAX_FRAMES,
            parent_dir=GRADIO_TEMP_DIR,
        )
        paths = sorted(pathlib.Path(temp_dir).glob("*.jpg"))
        return [
            {"type": "text", "text": message["text"]},
            *[{"type": "image", "image": path.as_posix()} for path in paths],
        ]

    return [
        {"type": "text", "text": message["text"]},
        *[{"type": file_type, file_type: path} for path, file_type in zip(message["files"], file_types, strict=True)],
    ]


def process_history(history: list[dict]) -> list[dict]:
    messages = []
    current_user_content: list[dict] = []
    for item in history:
        if item["role"] == "assistant":
            if current_user_content:
                messages.append({"role": "user", "content": current_user_content})
                current_user_content = []
            messages.append({"role": "assistant", "content": [{"type": "text", "text": item["content"]}]})
        else:
            content = item["content"]
            if isinstance(content, str):
                current_user_content.append({"type": "text", "text": content})
            else:
                filepath = content[0]
                file_type = get_file_type(filepath)
                current_user_content.append({"type": file_type, file_type: filepath})
    return messages


@torch.inference_mode()
def _generate(message: dict, history: list[dict], system_prompt: str = "", max_new_tokens: int = 512) -> Iterator[str]:
    if not validate_media_constraints(message):
        yield ""
        return

    messages = []
    if system_prompt:
        messages.append({"role": "system", "content": [{"type": "text", "text": system_prompt}]})
    messages.extend(process_history(history))
    messages.append({"role": "user", "content": process_new_user_message(message)})

    inputs = processor.apply_chat_template(
        messages,
        add_generation_prompt=True,
        tokenize=True,
        return_dict=True,
        return_tensors="pt",
    )
    n_tokens = inputs["input_ids"].shape[1]
    if n_tokens > MAX_INPUT_TOKENS:
        gr.Warning(
            f"Input too long. Max {MAX_INPUT_TOKENS} tokens. Got {n_tokens} tokens. This limit is set to avoid CUDA out-of-memory errors in this Space."
        )
        yield ""
        return

    inputs = inputs.to(device=model.device, dtype=torch.bfloat16)

    streamer = TextIteratorStreamer(processor, timeout=30.0, skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = dict(
        inputs,
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=False,
        disable_compile=True,
    )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    output = ""
    for delta in streamer:
        output += delta
        yield output


@spaces.GPU(time_limit=120)
def generate(data: WebRTCData, history: list[dict], system_prompt: str = "", max_new_tokens: int = 512, image=None):
    files = []
    if data.audio is not None and data.audio[1].size > 0:
        files.append(save_audio_to_cache(data.audio[1], data.audio[0], format="mp3", cache_dir=get_upload_folder()))
    if image is not None:
        files.append(image)
    message = {
        "text": data.textbox,
        "files": files,
    }
    print("message", message)
    history.append({"role": "user", "content": data.textbox})
    print("history", history)
    yield AdditionalOutputs(history)
    new_message = {"role": "assistant", "content": ""}
    for output in _generate(message, history, system_prompt, max_new_tokens):
        new_message["content"] = output
        yield AdditionalOutputs(history + [new_message])


with gr.Blocks() as demo:
    chatbot = gr.Chatbot(type="messages")
    webrtc = WebRTC(
        modality="audio",
        mode="send",
        variant="textbox",
        rtc_configuration=get_hf_turn_credentials,
        server_rtc_configuration=get_hf_turn_credentials(ttl=3_600 * 24 * 30),
    )
    with gr.Accordion(label="Additional Inputs"):
        sp = gr.Textbox(label="System Prompt", value="You are a helpful assistant.")
        slider = gr.Slider(label="Max New Tokens", minimum=100, maximum=2000, step=10, value=700)
        image = gr.Image(type="filepath")

    webrtc.stream(
        ReplyOnPause(generate),  # type: ignore
        inputs=[webrtc, chatbot, sp, slider, image],
        outputs=[chatbot],
        concurrency_limit=100,
    )
    webrtc.on_additional_outputs(lambda old, new: new, inputs=[chatbot], outputs=[chatbot], concurrency_limit=100)

if __name__ == "__main__":
    demo.launch(ssr_mode=False)