File size: 8,893 Bytes
9a14671
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import os
import cv2
import gradio as gr
from dotenv import load_dotenv
import spaces

from main import (
    run,
    detect_scenes,
    extract_keyframes,
    generate_scene_caption,
    generate_video_summary,
    generate_video_summary_groq,
    vqa_matches,
    semantic_matches,
    remove_scenes,
)

# Load environment variables
load_dotenv()
if not os.getenv("HF_TOKEN"):
    raise ValueError("❌ Error: HF_TOKEN not found in .env file")

@spaces.GPU
def process_video(video_path, query, progress=gr.Progress()):
    """Scene‐filtering tab: remove scenes matching the query."""
    try:
        os.makedirs("outputs", exist_ok=True)
        output_path = os.path.join("outputs", "trimmed_video.mp4")

        # 1) Detect scenes
        progress(0.0, desc="Detecting scenes...")
        scenes = detect_scenes(video_path)

        # 2) Extract keyframes
        progress(0.2, desc="Extracting keyframes...")
        keyframes = extract_keyframes(video_path, scenes)

        # 3) Caption each keyframe
        progress(0.4, desc="Generating captions...")
        captions = [generate_scene_caption(frame) for _, frame in keyframes]

        # 4) VQA + semantic filtering
        progress(0.6, desc="Analyzing scenes...")
        vqa_mask   = vqa_matches(keyframes, query)
        sem_idxs, _= semantic_matches(captions, query)

        # 5) Build removal list
        to_remove = sorted({i for i, flag in enumerate(vqa_mask) if flag} | set(sem_idxs))

        # 6) Trim via ffmpeg
        progress(0.8, desc="Processing video...")
        if to_remove:
            remove_scenes(video_path, scenes, to_remove, output_path)
            
            # Verify the output video
            if not os.path.exists(output_path):
                return None, "❌ Error: Failed to create output video"
                
            # Check if video is valid
            cap = cv2.VideoCapture(output_path)
            if not cap.isOpened():
                return None, "❌ Error: Generated video is invalid"
            cap.release()
            
            stats = [
                "✅ Processing complete!",
                f"📊 Total scenes: {len(scenes)}",
                f"🗑️ Scenes removed: {len(to_remove)}",
                f"🎬 Scenes kept: {len(scenes)-len(to_remove)}",
                "\n🔍 Scene captions:",
                *[f"[Scene {i}]: {cap}" for i, cap in enumerate(captions)]
            ]
            return output_path, "\n".join(stats)
        else:
            return None, "⚠️ No matching scenes found; no trimming done."
    except Exception as e:
        return None, f"❌ Error: {e}"

@spaces.GPU
def generate_video_description(video_path, progress=gr.Progress()):
    """Video‐description tab: full scene‐by‐scene summary."""
    try:
        progress(0.0, desc="Detecting scenes...")
        scenes = detect_scenes(video_path)

        progress(0.3, desc="Extracting keyframes...")
        keyframes = extract_keyframes(video_path, scenes)

        progress(0.6, desc="Captioning scenes...")
        captions = [generate_scene_caption(frame) for _, frame in keyframes]

        # build & return the summary paragraph
        summary = generate_video_summary(captions)
        return summary
    except Exception as e:
        return f"❌ Error: {e}"

@spaces.GPU
def get_frame_description(video_path, frame_number):
    """Frame‐analysis tab: caption a single frame."""
    try:
        cap = cv2.VideoCapture(video_path)
        cap.set(cv2.CAP_PROP_POS_FRAMES, int(frame_number))
        ret, frame = cap.read()
        cap.release()

        if not ret:
            return "❌ Invalid frame number"
        return f"Frame {frame_number}:\n{generate_scene_caption(frame)}"
    except Exception as e:
        return f"❌ Error: {e}"

# ─── Gradio UI ────────────────────────────────────────────────────────────────

with gr.Blocks(theme=gr.themes.Soft(), css="""
    footer {visibility: hidden}
    .custom-footer {
        text-align: center;
        margin-top: 2em;
        margin-bottom: 1em;
        color: #666;
    }
    .description {
        color: #666;
        font-size: 0.9em;
        line-height: 1.5;
    }
    .tech-stack {
        background: #f5f5f5;
        padding: 1em;
        border-radius: 8px;
        margin: 1em 0;
    }
""") as demo:
    gr.Markdown("""
    # Videoxity
    
    A powerful playground for video analysis and manipulation using state-of-the-art Vision-Language models.
    
    <div class="description">
    This application demonstrates the capabilities of modern AI in video processing, offering a foundation for developers to build upon and optimize. 
    Whether you're exploring scene detection, content filtering, or video summarization, Videoxity provides the tools to experiment with and enhance video understanding.
    </div>
    
    <div class="tech-stack">
    <strong>Technical Stack:</strong>
    - Scene Detection: PySceneDetect with ContentDetector
    - Vision Models: BLIP (Image Captioning & VQA)
    - Language Models: Groq LLM (Llama 3.1)
    - Video Processing: OpenCV & FFmpeg
    - Embeddings: BGE-Small for semantic search
    </div>
    """)

    with gr.Tabs():
        # 1) Scene Filtering
        with gr.TabItem("Frames to Cut"):
            gr.Markdown("""
            ### Remove specific scenes from your video
            Upload a video and describe which scenes you want to remove. The AI will analyze each scene and cut out the matching ones.
            
            Examples:
            - "Remove the part where there is a cat in the video"
            - "Cut out the scene where people are dancing"
            """)
            with gr.Row():
                with gr.Column():
                    vid1 = gr.Video(
                        label="Upload Video",
                        format="mp4",
                        interactive=True
                    )
                    qry1 = gr.Textbox(
                        label="Scenes to Remove",
                        placeholder="e.g., 'Remove the part where there is a cat in the video'",
                        lines=2
                    )
                    btn1 = gr.Button("Process Video", variant="primary")
                with gr.Column():
                    outVid = gr.Video(
                        label="Processed Video",
                        format="mp4",
                        interactive=True
                    )
                    outTxt = gr.Textbox(label="Results", lines=10)
            btn1.click(
                fn=process_video,
                inputs=[vid1, qry1],
                outputs=[outVid, outTxt]
            )

        # 2) Video Description
        with gr.TabItem("Video Description"):
            gr.Markdown("""
            ### Generate a comprehensive description of your video
            Get AI-generated descriptions for all scenes in your video.
            """)
            with gr.Row():
                with gr.Column():
                    vid2 = gr.Video(label="Upload Video")
                    btn2 = gr.Button("Generate Description", variant="primary")
                with gr.Column():
                    outDesc = gr.Textbox(
                        label="Video Description",
                        lines=15,
                        show_copy_button=True
                    )
            btn2.click(
                fn=generate_video_description,
                inputs=[vid2],
                outputs=[outDesc]
            )

        # 3) Frame Analysis
        with gr.TabItem("Frame Analysis"):
            gr.Markdown("""
            ### Analyze specific frames in your video
            Get detailed descriptions for individual frames.
            """)
            with gr.Row():
                with gr.Column():
                    vid3 = gr.Video(label="Upload Video")
                    fn3 = gr.Number(
                        label="Frame Number",
                        value=0,
                        precision=0,
                        minimum=0
                    )
                    btn3 = gr.Button("Analyze Frame", variant="primary")
                with gr.Column():
                    outFrm = gr.Textbox(
                        label="Frame Description",
                        lines=5,
                        show_copy_button=True
                    )
            btn3.click(
                fn=get_frame_description,
                inputs=[vid3, fn3],
                outputs=[outFrm]
            )

    # Add custom centered footer
    gr.Markdown("""
    <div class="custom-footer">
    Made with ❤️
    </div>
    """, elem_classes=["custom-footer"])

if __name__ == "__main__":
    demo.launch(share=True, show_error=True, show_api=False)