Spaces:
Runtime error
Runtime error
| // Copyright (c) Facebook, Inc. and its affiliates. | |
| // modified from | |
| // https://github.com/open-mmlab/mmdetection/blob/master/mmdet/ops/dcn/src/deform_conv_cuda.cpp | |
| // Original license: Apache 2.0 | |
| // modify from | |
| // https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/blob/mmdetection/mmdet/ops/dcn/src/deform_conv_cuda.c | |
| // Original license: Apache 2.0 | |
| #include <torch/types.h> | |
| #include "deform_conv.h" | |
| #include <cmath> | |
| #include <vector> | |
| namespace detectron2 { | |
| void deformable_im2col( | |
| const at::Tensor data_im, | |
| const at::Tensor data_offset, | |
| const int channels, | |
| const int height, | |
| const int width, | |
| const int ksize_h, | |
| const int ksize_w, | |
| const int pad_h, | |
| const int pad_w, | |
| const int stride_h, | |
| const int stride_w, | |
| const int dilation_h, | |
| const int dilation_w, | |
| const int parallel_imgs, | |
| const int deformable_group, | |
| at::Tensor data_col); | |
| void deformable_col2im( | |
| const at::Tensor data_col, | |
| const at::Tensor data_offset, | |
| const int channels, | |
| const int height, | |
| const int width, | |
| const int ksize_h, | |
| const int ksize_w, | |
| const int pad_h, | |
| const int pad_w, | |
| const int stride_h, | |
| const int stride_w, | |
| const int dilation_h, | |
| const int dilation_w, | |
| const int parallel_imgs, | |
| const int deformable_group, | |
| at::Tensor grad_im); | |
| void deformable_col2im_coord( | |
| const at::Tensor data_col, | |
| const at::Tensor data_im, | |
| const at::Tensor data_offset, | |
| const int channels, | |
| const int height, | |
| const int width, | |
| const int ksize_h, | |
| const int ksize_w, | |
| const int pad_h, | |
| const int pad_w, | |
| const int stride_h, | |
| const int stride_w, | |
| const int dilation_h, | |
| const int dilation_w, | |
| const int parallel_imgs, | |
| const int deformable_group, | |
| at::Tensor grad_offset); | |
| void modulated_deformable_im2col_cuda( | |
| const at::Tensor data_im, | |
| const at::Tensor data_offset, | |
| const at::Tensor data_mask, | |
| const int batch_size, | |
| const int channels, | |
| const int height_im, | |
| const int width_im, | |
| const int height_col, | |
| const int width_col, | |
| const int kernel_h, | |
| const int kenerl_w, | |
| const int pad_h, | |
| const int pad_w, | |
| const int stride_h, | |
| const int stride_w, | |
| const int dilation_h, | |
| const int dilation_w, | |
| const int deformable_group, | |
| at::Tensor data_col); | |
| void modulated_deformable_col2im_cuda( | |
| const at::Tensor data_col, | |
| const at::Tensor data_offset, | |
| const at::Tensor data_mask, | |
| const int batch_size, | |
| const int channels, | |
| const int height_im, | |
| const int width_im, | |
| const int height_col, | |
| const int width_col, | |
| const int kernel_h, | |
| const int kenerl_w, | |
| const int pad_h, | |
| const int pad_w, | |
| const int stride_h, | |
| const int stride_w, | |
| const int dilation_h, | |
| const int dilation_w, | |
| const int deformable_group, | |
| at::Tensor grad_im); | |
| void modulated_deformable_col2im_coord_cuda( | |
| const at::Tensor data_col, | |
| const at::Tensor data_im, | |
| const at::Tensor data_offset, | |
| const at::Tensor data_mask, | |
| const int batch_size, | |
| const int channels, | |
| const int height_im, | |
| const int width_im, | |
| const int height_col, | |
| const int width_col, | |
| const int kernel_h, | |
| const int kenerl_w, | |
| const int pad_h, | |
| const int pad_w, | |
| const int stride_h, | |
| const int stride_w, | |
| const int dilation_h, | |
| const int dilation_w, | |
| const int deformable_group, | |
| at::Tensor grad_offset, | |
| at::Tensor grad_mask); | |
| void shape_check( | |
| at::Tensor input, | |
| at::Tensor offset, | |
| at::Tensor* gradOutput, | |
| at::Tensor weight, | |
| int kH, | |
| int kW, | |
| int dH, | |
| int dW, | |
| int padH, | |
| int padW, | |
| int dilationH, | |
| int dilationW, | |
| int group, | |
| int deformable_group) { | |
| TORCH_CHECK( | |
| weight.ndimension() == 4, | |
| "4D weight tensor (nOutputPlane,nInputPlane,kH,kW) expected, " | |
| "but got: %s", | |
| weight.ndimension()); | |
| TORCH_CHECK(weight.is_contiguous(), "weight tensor has to be contiguous"); | |
| TORCH_CHECK( | |
| kW > 0 && kH > 0, | |
| "kernel size should be greater than zero, but got kH: %d kW: %d", | |
| kH, | |
| kW); | |
| TORCH_CHECK( | |
| (weight.size(2) == kH && weight.size(3) == kW), | |
| "kernel size should be consistent with weight, ", | |
| "but got kH: %d kW: %d weight.size(2): %d, weight.size(3): %d", | |
| kH, | |
| kW, | |
| weight.size(2), | |
| weight.size(3)); | |
| TORCH_CHECK( | |
| dW > 0 && dH > 0, | |
| "stride should be greater than zero, but got dH: %d dW: %d", | |
| dH, | |
| dW); | |
| TORCH_CHECK( | |
| dilationW > 0 && dilationH > 0, | |
| "dilation should be greater than 0, but got dilationH: %d dilationW: %d", | |
| dilationH, | |
| dilationW); | |
| int ndim = input.ndimension(); | |
| int dimf = 0; | |
| int dimh = 1; | |
| int dimw = 2; | |
| if (ndim == 4) { | |
| dimf++; | |
| dimh++; | |
| dimw++; | |
| } | |
| TORCH_CHECK( | |
| ndim == 3 || ndim == 4, | |
| "3D or 4D input tensor expected but got: %s", | |
| ndim); | |
| long nInputPlane = weight.size(1) * group; | |
| long inputHeight = input.size(dimh); | |
| long inputWidth = input.size(dimw); | |
| long nOutputPlane = weight.size(0); | |
| long outputHeight = | |
| (inputHeight + 2 * padH - (dilationH * (kH - 1) + 1)) / dH + 1; | |
| long outputWidth = | |
| (inputWidth + 2 * padW - (dilationW * (kW - 1) + 1)) / dW + 1; | |
| TORCH_CHECK( | |
| nInputPlane % deformable_group == 0, | |
| "input channels must divide deformable group size"); | |
| if (outputWidth < 1 || outputHeight < 1) | |
| AT_ERROR( | |
| "Given input size: (%ld x %ld x %ld). " | |
| "Calculated output size: (%ld x %ld x %ld). Output size is too small", | |
| nInputPlane, | |
| inputHeight, | |
| inputWidth, | |
| nOutputPlane, | |
| outputHeight, | |
| outputWidth); | |
| TORCH_CHECK( | |
| input.size(1) == nInputPlane, | |
| "invalid number of input planes, expected: %d, but got: %d", | |
| nInputPlane, | |
| input.size(1)); | |
| TORCH_CHECK( | |
| (inputHeight + 2 * padH >= kH && inputWidth + 2 * padW >= kW), | |
| "input image is smaller than kernel"); | |
| TORCH_CHECK( | |
| (offset.size(2) == outputHeight && offset.size(3) == outputWidth), | |
| "invalid spatial size of offset, expected height: %d width: %d, but " | |
| "got height: %d width: %d", | |
| outputHeight, | |
| outputWidth, | |
| offset.size(2), | |
| offset.size(3)); | |
| TORCH_CHECK( | |
| (offset.size(1) == deformable_group * 2 * kH * kW), | |
| "invalid number of channels of offset"); | |
| if (gradOutput != NULL) { | |
| TORCH_CHECK( | |
| gradOutput->size(dimf) == nOutputPlane, | |
| "invalid number of gradOutput planes, expected: %d, but got: %d", | |
| nOutputPlane, | |
| gradOutput->size(dimf)); | |
| TORCH_CHECK( | |
| (gradOutput->size(dimh) == outputHeight && | |
| gradOutput->size(dimw) == outputWidth), | |
| "invalid size of gradOutput, expected height: %d width: %d , but " | |
| "got height: %d width: %d", | |
| outputHeight, | |
| outputWidth, | |
| gradOutput->size(dimh), | |
| gradOutput->size(dimw)); | |
| } | |
| } | |
| int deform_conv_forward_cuda( | |
| at::Tensor input, | |
| at::Tensor weight, | |
| at::Tensor offset, | |
| at::Tensor output, | |
| at::Tensor columns, | |
| at::Tensor ones, | |
| int kW, | |
| int kH, | |
| int dW, | |
| int dH, | |
| int padW, | |
| int padH, | |
| int dilationW, | |
| int dilationH, | |
| int group, | |
| int deformable_group, | |
| int im2col_step) { | |
| // todo: resize columns to include im2col: done | |
| // todo: add im2col_step as input | |
| // todo: add new output buffer and transpose it to output (or directly | |
| // transpose output) todo: possibly change data indexing because of | |
| // parallel_imgs | |
| shape_check( | |
| input, | |
| offset, | |
| NULL, | |
| weight, | |
| kH, | |
| kW, | |
| dH, | |
| dW, | |
| padH, | |
| padW, | |
| dilationH, | |
| dilationW, | |
| group, | |
| deformable_group); | |
| input = input.contiguous(); | |
| offset = offset.contiguous(); | |
| weight = weight.contiguous(); | |
| int batch = 1; | |
| if (input.ndimension() == 3) { | |
| // Force batch | |
| batch = 0; | |
| input.unsqueeze_(0); | |
| offset.unsqueeze_(0); | |
| } | |
| // todo: assert batchsize dividable by im2col_step | |
| long batchSize = input.size(0); | |
| long nInputPlane = input.size(1); | |
| long inputHeight = input.size(2); | |
| long inputWidth = input.size(3); | |
| long nOutputPlane = weight.size(0); | |
| long outputWidth = | |
| (inputWidth + 2 * padW - (dilationW * (kW - 1) + 1)) / dW + 1; | |
| long outputHeight = | |
| (inputHeight + 2 * padH - (dilationH * (kH - 1) + 1)) / dH + 1; | |
| TORCH_CHECK((offset.size(0) == batchSize), "invalid batch size of offset"); | |
| output = output.view( | |
| {batchSize / im2col_step, | |
| im2col_step, | |
| nOutputPlane, | |
| outputHeight, | |
| outputWidth}); | |
| columns = at::zeros( | |
| {nInputPlane * kW * kH, im2col_step * outputHeight * outputWidth}, | |
| input.options()); | |
| if (ones.ndimension() != 2 || | |
| ones.size(0) * ones.size(1) < outputHeight * outputWidth) { | |
| ones = at::ones({outputHeight, outputWidth}, input.options()); | |
| } | |
| input = input.view( | |
| {batchSize / im2col_step, | |
| im2col_step, | |
| nInputPlane, | |
| inputHeight, | |
| inputWidth}); | |
| offset = offset.view( | |
| {batchSize / im2col_step, | |
| im2col_step, | |
| deformable_group * 2 * kH * kW, | |
| outputHeight, | |
| outputWidth}); | |
| at::Tensor output_buffer = at::zeros( | |
| {batchSize / im2col_step, | |
| nOutputPlane, | |
| im2col_step * outputHeight, | |
| outputWidth}, | |
| output.options()); | |
| output_buffer = output_buffer.view( | |
| {output_buffer.size(0), | |
| group, | |
| output_buffer.size(1) / group, | |
| output_buffer.size(2), | |
| output_buffer.size(3)}); | |
| for (int elt = 0; elt < batchSize / im2col_step; elt++) { | |
| deformable_im2col( | |
| input[elt], | |
| offset[elt], | |
| nInputPlane, | |
| inputHeight, | |
| inputWidth, | |
| kH, | |
| kW, | |
| padH, | |
| padW, | |
| dH, | |
| dW, | |
| dilationH, | |
| dilationW, | |
| im2col_step, | |
| deformable_group, | |
| columns); | |
| columns = columns.view({group, columns.size(0) / group, columns.size(1)}); | |
| weight = weight.view( | |
| {group, | |
| weight.size(0) / group, | |
| weight.size(1), | |
| weight.size(2), | |
| weight.size(3)}); | |
| for (int g = 0; g < group; g++) { | |
| output_buffer[elt][g] = output_buffer[elt][g] | |
| .flatten(1) | |
| .addmm_(weight[g].flatten(1), columns[g]) | |
| .view_as(output_buffer[elt][g]); | |
| } | |
| } | |
| output_buffer = output_buffer.view( | |
| {output_buffer.size(0), | |
| output_buffer.size(1) * output_buffer.size(2), | |
| output_buffer.size(3), | |
| output_buffer.size(4)}); | |
| output_buffer = output_buffer.view( | |
| {batchSize / im2col_step, | |
| nOutputPlane, | |
| im2col_step, | |
| outputHeight, | |
| outputWidth}); | |
| output_buffer.transpose_(1, 2); | |
| output.copy_(output_buffer); | |
| output = output.view({batchSize, nOutputPlane, outputHeight, outputWidth}); | |
| input = input.view({batchSize, nInputPlane, inputHeight, inputWidth}); | |
| offset = offset.view( | |
| {batchSize, deformable_group * 2 * kH * kW, outputHeight, outputWidth}); | |
| if (batch == 0) { | |
| output = output.view({nOutputPlane, outputHeight, outputWidth}); | |
| input = input.view({nInputPlane, inputHeight, inputWidth}); | |
| offset = offset.view({offset.size(1), offset.size(2), offset.size(3)}); | |
| } | |
| return 1; | |
| } | |
| int deform_conv_backward_input_cuda( | |
| at::Tensor input, | |
| at::Tensor offset, | |
| at::Tensor gradOutput, | |
| at::Tensor gradInput, | |
| at::Tensor gradOffset, | |
| at::Tensor weight, | |
| at::Tensor columns, | |
| int kW, | |
| int kH, | |
| int dW, | |
| int dH, | |
| int padW, | |
| int padH, | |
| int dilationW, | |
| int dilationH, | |
| int group, | |
| int deformable_group, | |
| int im2col_step) { | |
| shape_check( | |
| input, | |
| offset, | |
| &gradOutput, | |
| weight, | |
| kH, | |
| kW, | |
| dH, | |
| dW, | |
| padH, | |
| padW, | |
| dilationH, | |
| dilationW, | |
| group, | |
| deformable_group); | |
| input = input.contiguous(); | |
| offset = offset.contiguous(); | |
| gradOutput = gradOutput.contiguous(); | |
| weight = weight.contiguous(); | |
| int batch = 1; | |
| if (input.ndimension() == 3) { | |
| // Force batch | |
| batch = 0; | |
| input = input.view({1, input.size(0), input.size(1), input.size(2)}); | |
| offset = offset.view({1, offset.size(0), offset.size(1), offset.size(2)}); | |
| gradOutput = gradOutput.view( | |
| {1, gradOutput.size(0), gradOutput.size(1), gradOutput.size(2)}); | |
| } | |
| long batchSize = input.size(0); | |
| long nInputPlane = input.size(1); | |
| long inputHeight = input.size(2); | |
| long inputWidth = input.size(3); | |
| long nOutputPlane = weight.size(0); | |
| long outputWidth = | |
| (inputWidth + 2 * padW - (dilationW * (kW - 1) + 1)) / dW + 1; | |
| long outputHeight = | |
| (inputHeight + 2 * padH - (dilationH * (kH - 1) + 1)) / dH + 1; | |
| TORCH_CHECK((offset.size(0) == batchSize), 3, "invalid batch size of offset"); | |
| gradInput = gradInput.view({batchSize, nInputPlane, inputHeight, inputWidth}); | |
| columns = at::zeros( | |
| {nInputPlane * kW * kH, im2col_step * outputHeight * outputWidth}, | |
| input.options()); | |
| // change order of grad output | |
| gradOutput = gradOutput.view( | |
| {batchSize / im2col_step, | |
| im2col_step, | |
| nOutputPlane, | |
| outputHeight, | |
| outputWidth}); | |
| gradOutput.transpose_(1, 2); | |
| gradInput = gradInput.view( | |
| {batchSize / im2col_step, | |
| im2col_step, | |
| nInputPlane, | |
| inputHeight, | |
| inputWidth}); | |
| input = input.view( | |
| {batchSize / im2col_step, | |
| im2col_step, | |
| nInputPlane, | |
| inputHeight, | |
| inputWidth}); | |
| gradOffset = gradOffset.view( | |
| {batchSize / im2col_step, | |
| im2col_step, | |
| deformable_group * 2 * kH * kW, | |
| outputHeight, | |
| outputWidth}); | |
| offset = offset.view( | |
| {batchSize / im2col_step, | |
| im2col_step, | |
| deformable_group * 2 * kH * kW, | |
| outputHeight, | |
| outputWidth}); | |
| for (int elt = 0; elt < batchSize / im2col_step; elt++) { | |
| // divide into groups | |
| columns = columns.view({group, columns.size(0) / group, columns.size(1)}); | |
| weight = weight.view( | |
| {group, | |
| weight.size(0) / group, | |
| weight.size(1), | |
| weight.size(2), | |
| weight.size(3)}); | |
| gradOutput = gradOutput.view( | |
| {gradOutput.size(0), | |
| group, | |
| gradOutput.size(1) / group, | |
| gradOutput.size(2), | |
| gradOutput.size(3), | |
| gradOutput.size(4)}); | |
| for (int g = 0; g < group; g++) { | |
| columns[g] = columns[g].addmm_( | |
| weight[g].flatten(1).transpose(0, 1), | |
| gradOutput[elt][g].flatten(1), | |
| 0.0f, | |
| 1.0f); | |
| } | |
| columns = | |
| columns.view({columns.size(0) * columns.size(1), columns.size(2)}); | |
| gradOutput = gradOutput.view( | |
| {gradOutput.size(0), | |
| gradOutput.size(1) * gradOutput.size(2), | |
| gradOutput.size(3), | |
| gradOutput.size(4), | |
| gradOutput.size(5)}); | |
| deformable_col2im_coord( | |
| columns, | |
| input[elt], | |
| offset[elt], | |
| nInputPlane, | |
| inputHeight, | |
| inputWidth, | |
| kH, | |
| kW, | |
| padH, | |
| padW, | |
| dH, | |
| dW, | |
| dilationH, | |
| dilationW, | |
| im2col_step, | |
| deformable_group, | |
| gradOffset[elt]); | |
| deformable_col2im( | |
| columns, | |
| offset[elt], | |
| nInputPlane, | |
| inputHeight, | |
| inputWidth, | |
| kH, | |
| kW, | |
| padH, | |
| padW, | |
| dH, | |
| dW, | |
| dilationH, | |
| dilationW, | |
| im2col_step, | |
| deformable_group, | |
| gradInput[elt]); | |
| } | |
| gradOutput.transpose_(1, 2); | |
| gradOutput = | |
| gradOutput.view({batchSize, nOutputPlane, outputHeight, outputWidth}); | |
| gradInput = gradInput.view({batchSize, nInputPlane, inputHeight, inputWidth}); | |
| input = input.view({batchSize, nInputPlane, inputHeight, inputWidth}); | |
| gradOffset = gradOffset.view( | |
| {batchSize, deformable_group * 2 * kH * kW, outputHeight, outputWidth}); | |
| offset = offset.view( | |
| {batchSize, deformable_group * 2 * kH * kW, outputHeight, outputWidth}); | |
| if (batch == 0) { | |
| gradOutput = gradOutput.view({nOutputPlane, outputHeight, outputWidth}); | |
| input = input.view({nInputPlane, inputHeight, inputWidth}); | |
| gradInput = gradInput.view({nInputPlane, inputHeight, inputWidth}); | |
| offset = offset.view({offset.size(1), offset.size(2), offset.size(3)}); | |
| gradOffset = | |
| gradOffset.view({offset.size(1), offset.size(2), offset.size(3)}); | |
| } | |
| return 1; | |
| } | |
| int deform_conv_backward_parameters_cuda( | |
| at::Tensor input, | |
| at::Tensor offset, | |
| at::Tensor gradOutput, | |
| at::Tensor gradWeight, // at::Tensor gradBias, | |
| at::Tensor columns, | |
| at::Tensor ones, | |
| int kW, | |
| int kH, | |
| int dW, | |
| int dH, | |
| int padW, | |
| int padH, | |
| int dilationW, | |
| int dilationH, | |
| int group, | |
| int deformable_group, | |
| float scale, | |
| int im2col_step) { | |
| // todo: transpose and reshape outGrad | |
| // todo: reshape columns | |
| // todo: add im2col_step as input | |
| shape_check( | |
| input, | |
| offset, | |
| &gradOutput, | |
| gradWeight, | |
| kH, | |
| kW, | |
| dH, | |
| dW, | |
| padH, | |
| padW, | |
| dilationH, | |
| dilationW, | |
| group, | |
| deformable_group); | |
| input = input.contiguous(); | |
| offset = offset.contiguous(); | |
| gradOutput = gradOutput.contiguous(); | |
| int batch = 1; | |
| if (input.ndimension() == 3) { | |
| // Force batch | |
| batch = 0; | |
| input = input.view( | |
| at::IntList({1, input.size(0), input.size(1), input.size(2)})); | |
| gradOutput = gradOutput.view( | |
| {1, gradOutput.size(0), gradOutput.size(1), gradOutput.size(2)}); | |
| } | |
| long batchSize = input.size(0); | |
| long nInputPlane = input.size(1); | |
| long inputHeight = input.size(2); | |
| long inputWidth = input.size(3); | |
| long nOutputPlane = gradWeight.size(0); | |
| long outputWidth = | |
| (inputWidth + 2 * padW - (dilationW * (kW - 1) + 1)) / dW + 1; | |
| long outputHeight = | |
| (inputHeight + 2 * padH - (dilationH * (kH - 1) + 1)) / dH + 1; | |
| TORCH_CHECK((offset.size(0) == batchSize), "invalid batch size of offset"); | |
| columns = at::zeros( | |
| {nInputPlane * kW * kH, im2col_step * outputHeight * outputWidth}, | |
| input.options()); | |
| gradOutput = gradOutput.view( | |
| {batchSize / im2col_step, | |
| im2col_step, | |
| nOutputPlane, | |
| outputHeight, | |
| outputWidth}); | |
| gradOutput.transpose_(1, 2); | |
| at::Tensor gradOutputBuffer = at::zeros_like(gradOutput); | |
| gradOutputBuffer = gradOutputBuffer.view( | |
| {batchSize / im2col_step, | |
| nOutputPlane, | |
| im2col_step, | |
| outputHeight, | |
| outputWidth}); | |
| gradOutputBuffer.copy_(gradOutput); | |
| // gradOutput is not contiguous, so we do reshape (instead of view) next | |
| gradOutputBuffer = gradOutputBuffer.reshape( | |
| {batchSize / im2col_step, | |
| nOutputPlane, | |
| im2col_step * outputHeight, | |
| outputWidth}); | |
| gradOutput.transpose_(1, 2); | |
| gradOutput = | |
| gradOutput.view({batchSize, nOutputPlane, outputHeight, outputWidth}); | |
| input = input.view( | |
| {batchSize / im2col_step, | |
| im2col_step, | |
| nInputPlane, | |
| inputHeight, | |
| inputWidth}); | |
| offset = offset.view( | |
| {batchSize / im2col_step, | |
| im2col_step, | |
| deformable_group * 2 * kH * kW, | |
| outputHeight, | |
| outputWidth}); | |
| for (int elt = 0; elt < batchSize / im2col_step; elt++) { | |
| deformable_im2col( | |
| input[elt], | |
| offset[elt], | |
| nInputPlane, | |
| inputHeight, | |
| inputWidth, | |
| kH, | |
| kW, | |
| padH, | |
| padW, | |
| dH, | |
| dW, | |
| dilationH, | |
| dilationW, | |
| im2col_step, | |
| deformable_group, | |
| columns); | |
| // divide into group | |
| gradOutputBuffer = gradOutputBuffer.view( | |
| {gradOutputBuffer.size(0), | |
| group, | |
| gradOutputBuffer.size(1) / group, | |
| gradOutputBuffer.size(2), | |
| gradOutputBuffer.size(3)}); | |
| columns = columns.view({group, columns.size(0) / group, columns.size(1)}); | |
| gradWeight = gradWeight.view( | |
| {group, | |
| gradWeight.size(0) / group, | |
| gradWeight.size(1), | |
| gradWeight.size(2), | |
| gradWeight.size(3)}); | |
| for (int g = 0; g < group; g++) { | |
| gradWeight[g] = gradWeight[g] | |
| .flatten(1) | |
| .addmm_( | |
| gradOutputBuffer[elt][g].flatten(1), | |
| columns[g].transpose(1, 0), | |
| 1.0, | |
| scale) | |
| .view_as(gradWeight[g]); | |
| } | |
| gradOutputBuffer = gradOutputBuffer.view( | |
| {gradOutputBuffer.size(0), | |
| gradOutputBuffer.size(1) * gradOutputBuffer.size(2), | |
| gradOutputBuffer.size(3), | |
| gradOutputBuffer.size(4)}); | |
| columns = | |
| columns.view({columns.size(0) * columns.size(1), columns.size(2)}); | |
| gradWeight = gradWeight.view( | |
| {gradWeight.size(0) * gradWeight.size(1), | |
| gradWeight.size(2), | |
| gradWeight.size(3), | |
| gradWeight.size(4)}); | |
| } | |
| input = input.view({batchSize, nInputPlane, inputHeight, inputWidth}); | |
| offset = offset.view( | |
| {batchSize, deformable_group * 2 * kH * kW, outputHeight, outputWidth}); | |
| if (batch == 0) { | |
| gradOutput = gradOutput.view({nOutputPlane, outputHeight, outputWidth}); | |
| input = input.view({nInputPlane, inputHeight, inputWidth}); | |
| } | |
| return 1; | |
| } | |
| void modulated_deform_conv_cuda_forward( | |
| at::Tensor input, | |
| at::Tensor weight, | |
| at::Tensor bias, | |
| at::Tensor ones, | |
| at::Tensor offset, | |
| at::Tensor mask, | |
| at::Tensor output, | |
| at::Tensor columns, | |
| int kernel_h, | |
| int kernel_w, | |
| const int stride_h, | |
| const int stride_w, | |
| const int pad_h, | |
| const int pad_w, | |
| const int dilation_h, | |
| const int dilation_w, | |
| const int group, | |
| const int deformable_group, | |
| const bool with_bias) { | |
| shape_check( | |
| input, | |
| offset, | |
| NULL, | |
| weight, | |
| kernel_h, | |
| kernel_w, | |
| stride_h, | |
| stride_w, | |
| pad_h, | |
| pad_w, | |
| dilation_h, | |
| dilation_w, | |
| group, | |
| deformable_group); | |
| TORCH_CHECK(input.is_contiguous(), "input tensor has to be contiguous"); | |
| TORCH_CHECK(weight.is_contiguous(), "weight tensor has to be contiguous"); | |
| const int batch = input.size(0); | |
| const int channels = input.size(1); | |
| const int height = input.size(2); | |
| const int width = input.size(3); | |
| const int channels_out = weight.size(0); | |
| const int channels_kernel = weight.size(1); | |
| const int kernel_h_ = weight.size(2); | |
| const int kernel_w_ = weight.size(3); | |
| if (kernel_h_ != kernel_h || kernel_w_ != kernel_w) | |
| AT_ERROR( | |
| "Input shape and kernel shape wont match: (%d x %d vs %d x %d).", | |
| kernel_h_, | |
| kernel_w, | |
| kernel_h_, | |
| kernel_w_); | |
| if (channels != channels_kernel * group) | |
| AT_ERROR( | |
| "Input shape and kernel channels wont match: (%d vs %d).", | |
| channels, | |
| channels_kernel * group); | |
| const int height_out = | |
| (height + 2 * pad_h - (dilation_h * (kernel_h - 1) + 1)) / stride_h + 1; | |
| const int width_out = | |
| (width + 2 * pad_w - (dilation_w * (kernel_w - 1) + 1)) / stride_w + 1; | |
| // mask shape check | |
| TORCH_CHECK( | |
| (mask.size(2) == height_out && mask.size(3) == width_out), | |
| "invalid spatial size of mask, expected height: %d width: %d, but " | |
| "got height: %d width: %d", | |
| height_out, | |
| width_out, | |
| mask.size(2), | |
| mask.size(3)); | |
| TORCH_CHECK( | |
| (mask.size(1) == deformable_group * kernel_h * kernel_w), | |
| "invalid number of channels of mask"); | |
| if (ones.ndimension() != 2 || | |
| ones.size(0) * ones.size(1) < height_out * width_out) { | |
| // Resize plane and fill with ones... | |
| ones = at::ones({height_out, width_out}, input.options()); | |
| } | |
| // resize output | |
| output = output.view({batch, channels_out, height_out, width_out}).zero_(); | |
| // resize temporary columns | |
| columns = at::zeros( | |
| {channels * kernel_h * kernel_w, 1 * height_out * width_out}, | |
| input.options()); | |
| output = output.view( | |
| {output.size(0), | |
| group, | |
| output.size(1) / group, | |
| output.size(2), | |
| output.size(3)}); | |
| for (int b = 0; b < batch; b++) { | |
| modulated_deformable_im2col_cuda( | |
| input[b], | |
| offset[b], | |
| mask[b], | |
| 1, | |
| channels, | |
| height, | |
| width, | |
| height_out, | |
| width_out, | |
| kernel_h, | |
| kernel_w, | |
| pad_h, | |
| pad_w, | |
| stride_h, | |
| stride_w, | |
| dilation_h, | |
| dilation_w, | |
| deformable_group, | |
| columns); | |
| // divide into group | |
| weight = weight.view( | |
| {group, | |
| weight.size(0) / group, | |
| weight.size(1), | |
| weight.size(2), | |
| weight.size(3)}); | |
| columns = columns.view({group, columns.size(0) / group, columns.size(1)}); | |
| for (int g = 0; g < group; g++) { | |
| output[b][g] = output[b][g] | |
| .flatten(1) | |
| .addmm_(weight[g].flatten(1), columns[g]) | |
| .view_as(output[b][g]); | |
| } | |
| weight = weight.view( | |
| {weight.size(0) * weight.size(1), | |
| weight.size(2), | |
| weight.size(3), | |
| weight.size(4)}); | |
| columns = | |
| columns.view({columns.size(0) * columns.size(1), columns.size(2)}); | |
| } | |
| output = output.view( | |
| {output.size(0), | |
| output.size(1) * output.size(2), | |
| output.size(3), | |
| output.size(4)}); | |
| if (with_bias) { | |
| output += bias.view({1, bias.size(0), 1, 1}); | |
| } | |
| } | |
| void modulated_deform_conv_cuda_backward( | |
| at::Tensor input, | |
| at::Tensor weight, | |
| at::Tensor bias, | |
| at::Tensor ones, | |
| at::Tensor offset, | |
| at::Tensor mask, | |
| at::Tensor columns, | |
| at::Tensor grad_input, | |
| at::Tensor grad_weight, | |
| at::Tensor grad_bias, | |
| at::Tensor grad_offset, | |
| at::Tensor grad_mask, | |
| at::Tensor grad_output, | |
| int kernel_h, | |
| int kernel_w, | |
| int stride_h, | |
| int stride_w, | |
| int pad_h, | |
| int pad_w, | |
| int dilation_h, | |
| int dilation_w, | |
| int group, | |
| int deformable_group, | |
| const bool with_bias) { | |
| shape_check( | |
| input, | |
| offset, | |
| &grad_output, | |
| weight, | |
| kernel_h, | |
| kernel_w, | |
| stride_h, | |
| stride_w, | |
| pad_h, | |
| pad_w, | |
| dilation_h, | |
| dilation_w, | |
| group, | |
| deformable_group); | |
| TORCH_CHECK(input.is_contiguous(), "input tensor has to be contiguous"); | |
| TORCH_CHECK(weight.is_contiguous(), "weight tensor has to be contiguous"); | |
| const int batch = input.size(0); | |
| const int channels = input.size(1); | |
| const int height = input.size(2); | |
| const int width = input.size(3); | |
| const int channels_kernel = weight.size(1); | |
| const int kernel_h_ = weight.size(2); | |
| const int kernel_w_ = weight.size(3); | |
| if (kernel_h_ != kernel_h || kernel_w_ != kernel_w) | |
| AT_ERROR( | |
| "Input shape and kernel shape wont match: (%d x %d vs %d x %d).", | |
| kernel_h_, | |
| kernel_w, | |
| kernel_h_, | |
| kernel_w_); | |
| if (channels != channels_kernel * group) | |
| AT_ERROR( | |
| "Input shape and kernel channels wont match: (%d vs %d).", | |
| channels, | |
| channels_kernel * group); | |
| const int height_out = | |
| (height + 2 * pad_h - (dilation_h * (kernel_h - 1) + 1)) / stride_h + 1; | |
| const int width_out = | |
| (width + 2 * pad_w - (dilation_w * (kernel_w - 1) + 1)) / stride_w + 1; | |
| // mask shape check | |
| TORCH_CHECK( | |
| (mask.size(2) == height_out && mask.size(3) == width_out), | |
| "invalid spatial size of mask, expected height: %d width: %d, but " | |
| "got height: %d width: %d", | |
| height_out, | |
| width_out, | |
| mask.size(2), | |
| mask.size(3)); | |
| TORCH_CHECK( | |
| (mask.size(1) == deformable_group * kernel_h * kernel_w), | |
| "invalid number of channels of mask"); | |
| if (ones.ndimension() != 2 || | |
| ones.size(0) * ones.size(1) < height_out * width_out) { | |
| // Resize plane and fill with ones... | |
| ones = at::ones({height_out, width_out}, input.options()); | |
| } | |
| grad_input = grad_input.view({batch, channels, height, width}); | |
| columns = at::zeros( | |
| {channels * kernel_h * kernel_w, height_out * width_out}, | |
| input.options()); | |
| grad_output = grad_output.view( | |
| {grad_output.size(0), | |
| group, | |
| grad_output.size(1) / group, | |
| grad_output.size(2), | |
| grad_output.size(3)}); | |
| for (int b = 0; b < batch; b++) { | |
| // divide int group | |
| columns = columns.view({group, columns.size(0) / group, columns.size(1)}); | |
| weight = weight.view( | |
| {group, | |
| weight.size(0) / group, | |
| weight.size(1), | |
| weight.size(2), | |
| weight.size(3)}); | |
| for (int g = 0; g < group; g++) { | |
| columns[g].addmm_( | |
| weight[g].flatten(1).transpose(0, 1), | |
| grad_output[b][g].flatten(1), | |
| 0.0f, | |
| 1.0f); | |
| } | |
| columns = | |
| columns.view({columns.size(0) * columns.size(1), columns.size(2)}); | |
| weight = weight.view( | |
| {weight.size(0) * weight.size(1), | |
| weight.size(2), | |
| weight.size(3), | |
| weight.size(4)}); | |
| // gradient w.r.t. input coordinate data | |
| modulated_deformable_col2im_coord_cuda( | |
| columns, | |
| input[b], | |
| offset[b], | |
| mask[b], | |
| 1, | |
| channels, | |
| height, | |
| width, | |
| height_out, | |
| width_out, | |
| kernel_h, | |
| kernel_w, | |
| pad_h, | |
| pad_w, | |
| stride_h, | |
| stride_w, | |
| dilation_h, | |
| dilation_w, | |
| deformable_group, | |
| grad_offset[b], | |
| grad_mask[b]); | |
| // gradient w.r.t. input data | |
| modulated_deformable_col2im_cuda( | |
| columns, | |
| offset[b], | |
| mask[b], | |
| 1, | |
| channels, | |
| height, | |
| width, | |
| height_out, | |
| width_out, | |
| kernel_h, | |
| kernel_w, | |
| pad_h, | |
| pad_w, | |
| stride_h, | |
| stride_w, | |
| dilation_h, | |
| dilation_w, | |
| deformable_group, | |
| grad_input[b]); | |
| // gradient w.r.t. weight, dWeight should accumulate across the batch and | |
| // group | |
| modulated_deformable_im2col_cuda( | |
| input[b], | |
| offset[b], | |
| mask[b], | |
| 1, | |
| channels, | |
| height, | |
| width, | |
| height_out, | |
| width_out, | |
| kernel_h, | |
| kernel_w, | |
| pad_h, | |
| pad_w, | |
| stride_h, | |
| stride_w, | |
| dilation_h, | |
| dilation_w, | |
| deformable_group, | |
| columns); | |
| columns = columns.view({group, columns.size(0) / group, columns.size(1)}); | |
| grad_weight = grad_weight.view( | |
| {group, | |
| grad_weight.size(0) / group, | |
| grad_weight.size(1), | |
| grad_weight.size(2), | |
| grad_weight.size(3)}); | |
| if (with_bias) | |
| grad_bias = grad_bias.view({group, grad_bias.size(0) / group}); | |
| for (int g = 0; g < group; g++) { | |
| grad_weight[g] = | |
| grad_weight[g] | |
| .flatten(1) | |
| .addmm_(grad_output[b][g].flatten(1), columns[g].transpose(0, 1)) | |
| .view_as(grad_weight[g]); | |
| if (with_bias) { | |
| grad_bias[g] = | |
| grad_bias[g] | |
| .view({-1, 1}) | |
| .addmm_(grad_output[b][g].flatten(1), ones.view({-1, 1})) | |
| .view(-1); | |
| } | |
| } | |
| columns = | |
| columns.view({columns.size(0) * columns.size(1), columns.size(2)}); | |
| grad_weight = grad_weight.view( | |
| {grad_weight.size(0) * grad_weight.size(1), | |
| grad_weight.size(2), | |
| grad_weight.size(3), | |
| grad_weight.size(4)}); | |
| if (with_bias) | |
| grad_bias = grad_bias.view({grad_bias.size(0) * grad_bias.size(1)}); | |
| } | |
| grad_output = grad_output.view( | |
| {grad_output.size(0) * grad_output.size(1), | |
| grad_output.size(2), | |
| grad_output.size(3), | |
| grad_output.size(4)}); | |
| } | |
| } // namespace detectron2 | |