Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,211 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import spaces
|
3 |
+
import torch
|
4 |
+
from pydub import AudioSegment
|
5 |
+
import numpy as np
|
6 |
+
import io
|
7 |
+
from scipy.io import wavfile
|
8 |
+
from colpali_engine.models import ColQwen2_5Omni, ColQwen2_5OmniProcessor
|
9 |
+
from transformers.utils.import_utils import is_flash_attn_2_available
|
10 |
+
import base64
|
11 |
+
from scipy.io.wavfile import write
|
12 |
+
import os
|
13 |
+
|
14 |
+
# Global model variables
|
15 |
+
model = None
|
16 |
+
processor = None
|
17 |
+
|
18 |
+
def load_model():
|
19 |
+
"""Load model and processor once"""
|
20 |
+
global model, processor
|
21 |
+
if model is None:
|
22 |
+
model = ColQwen2_5Omni.from_pretrained(
|
23 |
+
"vidore/colqwen-omni-v0.1",
|
24 |
+
torch_dtype=torch.bfloat16,
|
25 |
+
device_map="cpu", # Start on CPU for ZeroGPU
|
26 |
+
attn_implementation="eager" # ZeroGPU compatible
|
27 |
+
).eval()
|
28 |
+
processor = ColQwen2_5OmniProcessor.from_pretrained("manu/colqwen-omni-v0.1")
|
29 |
+
return model, processor
|
30 |
+
|
31 |
+
def chunk_audio(audio_file, chunk_length=30):
|
32 |
+
"""Split audio into chunks"""
|
33 |
+
audio = AudioSegment.from_file(audio_file.name)
|
34 |
+
|
35 |
+
audios = []
|
36 |
+
target_rate = 16000
|
37 |
+
chunk_length_ms = chunk_length * 1000
|
38 |
+
|
39 |
+
for i in range(0, len(audio), chunk_length_ms):
|
40 |
+
chunk = audio[i:i + chunk_length_ms]
|
41 |
+
chunk = chunk.set_channels(1).set_frame_rate(target_rate)
|
42 |
+
|
43 |
+
buf = io.BytesIO()
|
44 |
+
chunk.export(buf, format="wav")
|
45 |
+
buf.seek(0)
|
46 |
+
|
47 |
+
rate, data = wavfile.read(buf)
|
48 |
+
audios.append(data)
|
49 |
+
|
50 |
+
return audios
|
51 |
+
|
52 |
+
@spaces.GPU(duration=120)
|
53 |
+
def embed_audio_chunks(audios):
|
54 |
+
"""Embed audio chunks using GPU"""
|
55 |
+
model, processor = load_model()
|
56 |
+
model = model.to('cuda')
|
57 |
+
|
58 |
+
# Process in batches
|
59 |
+
from torch.utils.data import DataLoader
|
60 |
+
|
61 |
+
dataloader = DataLoader(
|
62 |
+
dataset=audios,
|
63 |
+
batch_size=4,
|
64 |
+
shuffle=False,
|
65 |
+
collate_fn=lambda x: processor.process_audios(x)
|
66 |
+
)
|
67 |
+
|
68 |
+
embeddings = []
|
69 |
+
for batch_doc in dataloader:
|
70 |
+
with torch.no_grad():
|
71 |
+
batch_doc = {k: v.to(model.device) for k, v in batch_doc.items()}
|
72 |
+
embeddings_doc = model(**batch_doc)
|
73 |
+
embeddings.extend(list(torch.unbind(embeddings_doc.to("cpu"))))
|
74 |
+
|
75 |
+
# Move model back to CPU to free GPU memory
|
76 |
+
model = model.to('cpu')
|
77 |
+
torch.cuda.empty_cache()
|
78 |
+
|
79 |
+
return embeddings
|
80 |
+
|
81 |
+
@spaces.GPU(duration=60)
|
82 |
+
def search_audio(query, embeddings, audios, top_k=5):
|
83 |
+
"""Search for relevant audio chunks"""
|
84 |
+
model, processor = load_model()
|
85 |
+
model = model.to('cuda')
|
86 |
+
|
87 |
+
# Process query
|
88 |
+
batch_queries = processor.process_queries([query]).to(model.device)
|
89 |
+
|
90 |
+
with torch.no_grad():
|
91 |
+
query_embeddings = model(**batch_queries)
|
92 |
+
|
93 |
+
# Score against all embeddings
|
94 |
+
scores = processor.score_multi_vector(query_embeddings, embeddings)
|
95 |
+
top_indices = scores[0].topk(top_k).indices.tolist()
|
96 |
+
|
97 |
+
# Move model back to CPU
|
98 |
+
model = model.to('cpu')
|
99 |
+
torch.cuda.empty_cache()
|
100 |
+
|
101 |
+
return top_indices
|
102 |
+
|
103 |
+
def audio_to_base64(data, rate=16000):
|
104 |
+
"""Convert audio data to base64"""
|
105 |
+
buf = io.BytesIO()
|
106 |
+
write(buf, rate, data)
|
107 |
+
buf.seek(0)
|
108 |
+
encoded_string = base64.b64encode(buf.read()).decode("utf-8")
|
109 |
+
return encoded_string
|
110 |
+
|
111 |
+
def process_audio_rag(audio_file, query, chunk_length=30, use_openai=False, openai_key=None):
|
112 |
+
"""Main processing function"""
|
113 |
+
if not audio_file:
|
114 |
+
return "Please upload an audio file", None, None
|
115 |
+
|
116 |
+
# Chunk audio
|
117 |
+
audios = chunk_audio(audio_file, chunk_length)
|
118 |
+
|
119 |
+
# Embed chunks
|
120 |
+
embeddings = embed_audio_chunks(audios)
|
121 |
+
|
122 |
+
# Search for relevant chunks
|
123 |
+
top_indices = search_audio(query, embeddings, audios)
|
124 |
+
|
125 |
+
# Prepare results
|
126 |
+
result_text = f"Found {len(top_indices)} relevant audio chunks:\n"
|
127 |
+
result_text += f"Chunk indices: {top_indices}\n\n"
|
128 |
+
|
129 |
+
# Save first result as audio file
|
130 |
+
first_chunk_path = "result_chunk.wav"
|
131 |
+
wavfile.write(first_chunk_path, 16000, audios[top_indices[0]])
|
132 |
+
|
133 |
+
# Optional: Use OpenAI for answer generation
|
134 |
+
if use_openai and openai_key:
|
135 |
+
from openai import OpenAI
|
136 |
+
client = OpenAI(api_key=openai_key)
|
137 |
+
|
138 |
+
content = [{"type": "text", "text": f"Answer the query using the audio files. Query: {query}"}]
|
139 |
+
|
140 |
+
for idx in top_indices[:3]: # Use top 3 chunks
|
141 |
+
content.extend([
|
142 |
+
{"type": "text", "text": f"Audio chunk #{idx}:"},
|
143 |
+
{
|
144 |
+
"type": "input_audio",
|
145 |
+
"input_audio": {
|
146 |
+
"data": audio_to_base64(audios[idx]),
|
147 |
+
"format": "wav"
|
148 |
+
}
|
149 |
+
}
|
150 |
+
])
|
151 |
+
|
152 |
+
try:
|
153 |
+
completion = client.chat.completions.create(
|
154 |
+
model="gpt-4o-audio-preview",
|
155 |
+
messages=[{"role": "user", "content": content}]
|
156 |
+
)
|
157 |
+
result_text += f"\nOpenAI Answer: {completion.choices[0].message.content}"
|
158 |
+
except Exception as e:
|
159 |
+
result_text += f"\nOpenAI Error: {str(e)}"
|
160 |
+
|
161 |
+
# Create audio visualization
|
162 |
+
import matplotlib.pyplot as plt
|
163 |
+
fig, ax = plt.subplots(figsize=(10, 4))
|
164 |
+
ax.plot(audios[top_indices[0]])
|
165 |
+
ax.set_title(f"Waveform of top matching chunk (#{top_indices[0]})")
|
166 |
+
ax.set_xlabel("Samples")
|
167 |
+
ax.set_ylabel("Amplitude")
|
168 |
+
plt.tight_layout()
|
169 |
+
|
170 |
+
return result_text, first_chunk_path, fig
|
171 |
+
|
172 |
+
# Create Gradio interface
|
173 |
+
with gr.Blocks(title="AudioRAG Demo") as demo:
|
174 |
+
gr.Markdown("# AudioRAG Demo - Semantic Audio Search")
|
175 |
+
gr.Markdown("Upload an audio file and search through it using natural language queries!")
|
176 |
+
|
177 |
+
with gr.Row():
|
178 |
+
with gr.Column():
|
179 |
+
audio_input = gr.Audio(label="Upload Audio File", type="filepath")
|
180 |
+
query_input = gr.Textbox(label="Search Query", placeholder="What are you looking for in the audio?")
|
181 |
+
chunk_length = gr.Slider(minimum=10, maximum=60, value=30, step=5, label="Chunk Length (seconds)")
|
182 |
+
|
183 |
+
with gr.Accordion("OpenAI Integration (Optional)", open=False):
|
184 |
+
use_openai = gr.Checkbox(label="Use OpenAI for answer generation")
|
185 |
+
openai_key = gr.Textbox(label="OpenAI API Key", type="password")
|
186 |
+
|
187 |
+
search_btn = gr.Button("Search Audio", variant="primary")
|
188 |
+
|
189 |
+
with gr.Column():
|
190 |
+
output_text = gr.Textbox(label="Results", lines=10)
|
191 |
+
output_audio = gr.Audio(label="Top Matching Audio Chunk", type="filepath")
|
192 |
+
output_plot = gr.Plot(label="Audio Waveform")
|
193 |
+
|
194 |
+
search_btn.click(
|
195 |
+
fn=process_audio_rag,
|
196 |
+
inputs=[audio_input, query_input, chunk_length, use_openai, openai_key],
|
197 |
+
outputs=[output_text, output_audio, output_plot]
|
198 |
+
)
|
199 |
+
|
200 |
+
gr.Examples(
|
201 |
+
examples=[
|
202 |
+
["example_audio.wav", "Was Hannibal well liked by his men?", 30],
|
203 |
+
["podcast.mp3", "What did they say about climate change?", 20],
|
204 |
+
],
|
205 |
+
inputs=[audio_input, query_input, chunk_length]
|
206 |
+
)
|
207 |
+
|
208 |
+
if __name__ == "__main__":
|
209 |
+
# Load model on startup
|
210 |
+
load_model()
|
211 |
+
demo.launch()
|